0
点赞
收藏
分享

微信扫一扫

利用 Python 分析了某化妆品企业的销售情况!女生的钱确实好赚!

认真的老去 2021-09-26 阅读 88

【导语】本篇文章是关于某化妆品企业的销售分析。从分析思路思路开始带大家一步步的用python进行分析,找出问题,并提出解决方案的整个流程。

需求:希望全面了解此某妆品企业的销售情况,帮助企业运营领导层了解企业整体销售运营情况及商品销售情况,为该企业的营销策略提供相对应的建议和销售策略。

业务分析流程

1、 场景(诊断现状)

对象:用户;销售

关注点:找到影响销售的增长因素

目标:发现问题&提出解决方案

2、需求拆解

分析销售趋势,找到影响企业营收增长的商品或区域

按月份销售趋势图(整体)

商品销售额对比(一级、二级,找出最低、最高)

区域销售额对比(下钻:区、省,找出最低、最高)

探索不同商品的销售状况,为企业的商品销售,提出策略建议

不同月份的各个产品的销售额占比情况

产品相关分析

分析用户特征、购买频率、留存率等

购买频率分布

复购率(重复购买用户数量(两天都有购买过算重复)/用户数量)

同期群分析(按月)

3、代码实现

获取数据(excel)

为某化妆品企业 2019 年 1 月-2019 年 9 月每日订单详情数据和企业的商品信息数据,包括两个数据表,销售订单表和商品信息表。其中销售订单表为每个订单的情况明细,一个订单对应一次销售、一个订单可包含多个商品。

import pandas as pd

import matplotlib.pyplot as plt

import matplotlib as mpl

mpl.rcParams['font.family'] = 'SimHei'

import numpy as np

import warnings

warnings.filterwarnings("ignore")

data = pd.read_excel('C:/Users/cherich/Desktop/日化.xlsx',encoding='gbk')

data.head()

复制代码

data_info = pd.read_excel('C:/Users/cherich/Desktop/日化.xlsx',encoding='gbk',sheet_name='商品信息表')

data_info

复制代码

数据清洗和加工

data = data.dropna()

# 订购数量结尾有字符'个'

data['订购数量'] = data['订购数量'].apply(lambda x:str(x)[:-1] if str(x)[-1] == '个' else x)

data['订购数量'] = data['订购数量'].astype(int)

# 订购数量结尾有字符'元'

data['订购单价'] = data['订购单价'].apply(lambda x:str(x)[:-1] if str(x)[-1] == '元' else x)

data['订购单价'] = data['订购单价'].astype(int)

# 日期里有特殊字符 2019#3#11

def proess_date(df):

pos = str(df).find('#')

if pos!= -1:

df = str(df).split('#')

return df[0]+'-'+df[1]+'-'+df[2]

else:

return df

# res = proess_date(df ='2019#3#11')

data['订单日期'] = data['订单日期'].apply(proess_date)

data['订单日期'] = data['订单日期'].apply(lambda x:str(x).replace('年','-').replace('月','-') if '年' in str(x) else x )

data['订单日期'] = pd.to_datetime(data['订单日期'])`

#data.info()

data = data[data.duplicated()==False]

data['所在省份'].nunique()

data['月份'] = data['订单日期'].apply(lambda x:str(x).split('-')[1])`

data

复制代码

数据可视化

# 两张表数据合并

total_data = pd.merge(data,data_info,on='商品编号',how='left')

total_data

复制代码

groups = data.groupby('月份')

x = [each[0] for each in groups]

y = [each[1].金额.sum() for each in groups]

z = [each[1].金额.count() for each in groups]

money_mean = data.金额.sum()/9

order_mean = data.金额.count()/9

plt.figure(figsize=(18, 10), dpi=80)

plt.subplot(221)

plt.plot(x, y,linewidth=2)

plt.axvspan('07', '08', color='#EE7621', alpha=0.3)

plt.axhline(money_mean, color='#EE7621', linestyle='--',linewidth=1)

plt.title("每月销售额趋势图",color='#4A708B',fontsize=24)

plt.ylabel("金额/(亿)",fontsize=16)

plt.subplot(222)

plt.plot(x, z, linewidth=2, color = '#EE7621')

plt.axvline('07', color='#4A708B', linestyle='--',linewidth=1)

plt.axhline(order_mean, color='#4A708B', linestyle='--',linewidth=1)

plt.title("每月订单量趋势图",color='#4A708B',fontsize=24)

plt.ylabel("订单/(单)",fontsize=16)

plt.show()

复制代码

图表说明:从整体来看,销售额和订单量从4月开始大幅度上升,均高于均值;8月份开始呈下降趋势,处于均值水平。

groups_category= total_data.groupby(['月份','商品大类'])

category1 = []

category2 = []

for i,j in groups_category:

#    print(i,j.月份.count())

    if i[1]=='彩妆':

        category1.append(j.金额.sum())

    else:

        category2.append(j.金额.sum())

labels = x

xticks = np.arange(len(labels))

width = 0.5

p = np.arange(len(labels))

fig, ax = plt.subplots(figsize=(18,8))

rects1 = ax.bar(p - width/2, category1,width, label='彩妆',color='#FFEC8B')

rects2 = ax.bar(p + width/2, category2, width, label='护肤品',color='#4A708B')

ax.set_ylabel('销售额/(亿)')

ax.set_title('每月护肤品和彩妆的销售额对比图(大类)')

ax.set_xticks(xticks)

ax.set_xticklabels(labels)

ax.legend()

plt.show()

复制代码

图表说明:护肤品需求满足大多数人,明显高于彩妆。并且5月—8月是护肤品需求旺季。相比彩妆的变化不明显。

groups_categorys= total_data.groupby('商品小类')

x = [each[0] for each in groups_categorys]

y = [each[1].金额.sum() for each in groups_categorys]

fig = plt.figure(figsize=(18,8),dpi=80)

plt.title('各个品类的销售额对比图',color='#4A708B',fontsize=24)

plt.ylabel('销售额(元)',fontsize=15)

colors = ['#6699cc','#4A708B','#CDCD00','#DAA520','#EE7621','#FFEC8B','#CDCD00','#4A708B','#6699cc','#DAA520','#4A708B','#FFEC8B']

for i, group_name in enumerate(groups_categorys):

    lin1 =plt.bar(group_name[0], group_name[1].金额.sum(),width=0.8,color=colors[i])

    for rect in lin1:

        height = rect.get_height()

        plt.text(rect.get_x()+rect.get_width()/2, height+1, int(height),ha="center",

                fontsize=12)

plt.xticks(fontsize=15)

plt.grid()

plt.show()

复制代码

图表说明:面膜的销售额第一,其次是面霜、爽肤水。销售额最低的是蜜粉,眼影。

total_data = total_data.dropna()

total_data['所在区域'] = total_data['所在区域'].apply(lambda x:str(x).replace('男区','南区').replace('西 区','西区'))

groups_area= total_data.groupby(['所在区域','商品小类'])

results = {}

for i,j  in groups_area:

    money = int(j.金额.sum())

    if i[0] in results.keys():

        results[i[0]][i[1]] = money   

    else:

        results[i[0]] = {} 

        for cate in category_names:

            results[i[0]][cate] = 0

        results[i[0]]['口红'] = money

results= {key_data:list(values_data.values()) for key_data,values_data in results.items()}

def survey1(results, category_names):

    labels = list(results.keys())

    data = np.array(list(results.values()))

    data_cum = data.cumsum(axis=1)

    category_colors = plt.get_cmap('RdYlGn')(

        np.linspace(0.15, 0.85, data.shape[1]))

    fig, ax = plt.subplots(figsize=(25,8))

    ax.invert_yaxis()

    ax.xaxis.set_visible(False)

    ax.set_xlim(0, np.sum(data, axis=1).max())

    for i, (colname, color) in enumerate(zip(category_names, category_colors)):

        widths = data[:, i]

        starts = data_cum[:, i] - widths

        ax.barh(labels, widths, left=starts, height=0.5,

                label=colname, color=color)

        xcenters = starts + widths / 2

        r, g, b, _ = color

        text_color = 'white' if r * g * b < 0.5 else 'darkgrey'

        for y, (x, c) in enumerate(zip(xcenters, widths)):

            ax.text(x, y, str(int(c)), ha='center', va='center',color=text_color)

    ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1),

              loc='lower left', fontsize='small')

    return fig, ax

survey1(results, category_names)

plt.show()

复制代码

图表说明:东部地区占市场份额的35%左右,份额最低的是西部地区。

area_names = list(total_data.商品小类.unique())

groups_priv= total_data.groupby(['所在省份','商品小类'])

results = {}

for i,j  in groups_priv:

    money = int(j.金额.sum())

    if i[0] in results.keys():

        results[i[0]][i[1]] = money   

    else:

        results[i[0]] = {} 

        for cate in category_names:

            results[i[0]][cate] = 0

        results[i[0]]['口红'] = money

results= {key_data:list(values_data.values()) for key_data,values_data in results.items()}

def survey2(results, category_names):

    labels = list(results.keys())

    data = np.array(list(results.values()))

    data_cum = data.cumsum(axis=1)

    category_colors = plt.get_cmap('RdYlGn')(

        np.linspace(0.15, 0.85, data.shape[1]))

    fig, ax = plt.subplots(figsize=(25,20))

    ax.invert_yaxis()

    ax.xaxis.set_visible(False)

    ax.set_xlim(0, np.sum(data, axis=1).max())

    for i, (colname, color) in enumerate(zip(category_names, category_colors)):

        widths = data[:, i]

        starts = data_cum[:, i] - widths

        ax.barh(labels, widths, left=starts, height=0.5,

                label=colname, color=color)

        xcenters = starts + widths / 2

    ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1),

              loc='lower left', fontsize='small')

    return fig, ax

survey2(results, area_names)

plt.show()

复制代码

图表说明:江苏销售额第一,其次是广东省;销售额最低的是宁夏、内蒙、海南

import numpy as np

import matplotlib.pyplot as plt

category_names = list(total_data.商品小类.unique())

groups_small_category= total_data.groupby(['月份','商品小类'])

results = {}

for i,j  in groups_small_category:

    money = int(j.金额.sum())

    if i[0] in results.keys():

        results[i[0]][i[1]] = money   

    else:

        results[i[0]] = {} 

        for cate in category_names:

            results[i[0]][cate] = 0

        results[i[0]]['口红'] = money

results= {key_data:list(values_data.values()) for key_data,values_data in results.items()}

def survey(results, category_names):

    labels = list(results.keys())

    data = np.array(list(results.values()))

    data_cum = data.cumsum(axis=1)

    category_colors = plt.get_cmap('RdYlGn')(

        np.linspace(0.15, 0.85, data.shape[1]))

    fig, ax = plt.subplots(figsize=(25,8))

    ax.invert_yaxis()

    ax.xaxis.set_visible(False)

    ax.set_xlim(0, np.sum(data, axis=1).max())

    for i, (colname, color) in enumerate(zip(category_names, category_colors)):

        widths = data[:, i]

        starts = data_cum[:, i] - widths

        ax.barh(labels, widths, left=starts, height=0.5,

                label=colname, color=color)

        xcenters = starts + widths / 2

#        r, g, b, _ = color

#        text_color = 'white' if r * g * b < 0.5 else 'darkgrey'

#        for y, (x, c) in enumerate(zip(xcenters, widths)):

#            ax.text(x, y, str(int(c)), ha='center', va='center')

    ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1),

              loc='lower left', fontsize='small')

    return fig, ax

survey(results, category_names)

plt.show()

复制代码

图表说明:眼霜、爽肤水、面膜:4,5,6,7,8月份需求量最大;粉底、防晒霜、隔离霜、睫毛膏、蜜粉1,2,3月份需求量最大。

data_user_buy=total_data.groupby('客户编码')['订单编码'].count()

data_user_buy

plt.figure(figsize=(10,4),dpi=80)

plt.hist(data_user_buy,color='#FFEC8B')

plt.title('用户购买次数分布',fontsize=16)

plt.xlabel('购买次数')

plt.ylabel('用户数')

plt.show()

复制代码

图表说明:大部分用户购买次数在10次-35次之间,极少部分用户购买次数80次以上

date_rebuy=total_data.groupby('客户编码')['订单日期'].apply(lambda x:len(x.unique())).rename('rebuy_count')

date_rebuy

print('复购率:',round(date_rebuy[date_rebuy>=2].count()/date_rebuy.count(),4))

复制代码

total_data['时间标签'] = total_data['订单日期'].astype(str).str[:7]

total_data = total_data[total_data['时间标签']!='2050-06']

total_data['时间标签'].value_counts().sort_index()

total_data = total_data.sort_values(by='时间标签')

month_lst = total_data['时间标签'].unique()

final=pd.DataFrame()

final

#引入时间标签

for i in range(len(month_lst)-1):

    #构造和月份一样长的列表,方便后续格式统一

    count = [0] * len(month_lst)

    #筛选出当月订单,并按客户昵称分组

    target_month = total_data.loc[total_data['时间标签']==month_lst[i],:]

    target_users = target_month.groupby('客户编码')['金额'].sum().reset_index()

    #如果是第一个月份,则跳过(因为不需要和历史数据验证是否为新增客户)

    if i==0:

        new_target_users = target_month.groupby('客户编码')['金额'].sum().reset_index()

    else:

        #如果不是,找到之前的历史订单

        history = total_data.loc[total_data['时间标签'].isin(month_lst[:i]),:]

        #筛选出未在历史订单出现过的新增客户

        new_target_users = target_users.loc[target_users['客户编码'].isin(history['客户编码']) == False,:]

    #当月新增客户数放在第一个值中

    count[0] = len(new_target_users)

    #以月为单位,循环遍历,计算留存情况

    for j,ct in zip(range(i + 1,len(month_lst)),range(1,len(month_lst))):

        #下一个月的订单

        next_month = total_data.loc[total_data['时间标签'] == month_lst[j],:]

        next_users = next_month.groupby('客户编码')['金额'].sum().reset_index()

        #计算在该月仍然留存的客户数量

        isin = new_target_users['客户编码'].isin(next_users['客户编码']).sum()

        count[ct] = isin

    #格式转置

    result = pd.DataFrame({month_lst[i]:count}).T

    #合并

    final = pd.concat([final,result])

final.columns = ['当月新增','+1月','+2月','+3月','+4月','+5月','+6月','+7月','+8月']

result = final.divide(final['当月新增'],axis=0).iloc[:]

result['当月新增'] = final['当月新增']

result.round(2)

复制代码

同期群分析

图表说明:由新增用户情况看,新用户逐月明显减少;留存率在1月-5月平均在50%,6月-8月留存率上升明显。

结论与建议

1、从销售额趋势来看,整体是上升趋势,但是从8月份销售额突然下降,可能因为到淡季,需进一步确认原因;

2、商品销售额,用户对护肤品具有强烈的需求,尤其是面膜,爽肤水、面霜、眼霜。较低需求的是蜜粉。可以把高需求产品,组合成礼盒等套装活动;

3、商品销售建议:眼霜、爽肤水、面膜:4,5,6,7,8月需求最大;粉底、防晒霜、隔离霜、睫毛膏、蜜粉1,2,3月需求最大。以上说明用户购买特定产品具有周期性;

4、从地域来看,东部地区是消费的主力军,其中江苏省、广东省、浙江省的销售额最大。可以增大市场投放量;也可以考虑在该地区建仓,节省物流等成本;

5、用户:重点维护购买次数在10次-35次之间的用户群体;

6、留存率在99%,证明用户对产品有一定的依赖性;

7、从同期群分析来看,新用户明显减少,应考虑拉新,增加平台新用户(主播带货等);

近期有很多朋友通过私信咨询有关Python学习问题。为便于交流,点击蓝色自己加入讨论解答资源基地

举报

相关推荐

0 条评论