0
点赞
收藏
分享

微信扫一扫

Advanced Predictive Model 知识要点总结2

爱情锦囊 2022-02-14 阅读 20

1 Odds and Odds ratio

For binominal distribution X ∼ B i n ( N , p ) X \sim Bin(N,p) XBin(N,p), Y = X N Y = \frac{X}{N} Y=NX

μ = E ( Y ) = E ( X ) N = p = − c ′ ( p ) b ′ ( p ) = − − N / ( 1 − p ) N / p ( 1 − p ) \mu = E(Y) = \frac{E(X)}{N}=p=- \frac{c'(p)}{b'(p)}=-\frac{-N/(1-p)}{N/p(1-p)} μ=E(Y)=NE(X)=p=b(p)c(p)=N/p(1p)N/(1p)

g ( p ) = l o g i t ( p ) = l o g ( p 1 − p ) g(p) = logit(p)=log(\frac{p}{1-p}) g(p)=logit(p)=log(1pp) -----------Logit Link Function

Link function for binary data

  • Logit Link: h ( p ) = l o g ( p 1 − p ) h(p) =log(\frac{p}{1-p}) h(p)=log(1pp)
  • Probit Link: h ( p ) = ϕ − 1 ( p ) h(p) = \mathbb{\phi}^{-1}(p) h(p)=ϕ1(p), where ϕ \mathbb{\phi} ϕ is c.d.f of N ( 0 , 1 ) N(0,1) N(0,1)
  • Log-log Link: h ( p ) = − l o g ( − l o g ( p ) ) h(p) = -log(-log(p)) h(p)=log(log(p))
  • Complementray log-log Link: h ( p ) = − l o g ( − l o g ( 1 − p ) ) h(p) = -log(-log(1-p)) h(p)=log(log(1p))

Odds Definition

O d d s = p 1 − p Odds = \frac{p}{1-p} Odds=1pp, p p p is the probability of the outcome of interest, p = O d d s 1 + O d d s p = \frac{Odds}{1+Odds} p=1+OddsOdds

In logistic regression,

log odds: l o g ( O d d s ) = l o g ( p 1 − p ) = x T β log(Odds)=log(\frac{p}{1-p}) = x^\mathsf{T}\beta log(Odds)=log(1pp)=xTβ

log odds ratios β \beta β:
When compare the two coefficient of a factor
β = l o g ( p 1 1 − p 1 ) − l o g ( p 2 1 − p 2 ) = l o g ( O d d s 1 O d d s 2 ) \beta = log(\frac{p_1}{1-p_1})-log(\frac{p_2}{1-p_2}) \\ =log(\frac{Odds_1}{Odds_2}) β=log(1p1p1)log(1p2p2)=log(Odds2Odds1)

odds ratios e x p ( β ) exp(\beta) exp(β):
since O d d s 2 = e x p ( β ) O d d s 1 Odds_2=exp(\beta) Odds_1 Odds2=exp(β)Odds1, we also call exp ⁡ ( β ) \exp(\beta) exp(β) as odds multiplier.


2 Is it good fit?

For GLM: Deviance D D D

For logistic regression (binomial models):

  • Deviance residuals
    deviance residual :
    d k = s i g n ( y k − n k p ^ k ) × [ 2 [ y k l o g ( y k n k p ^ k ) + ( n k − y k ) l o g ( n k − y k n k − n k p ^ k ) ] ] 1 2 . d_k = sign(y_k-n_k\hat{p}_k) \times \left[2\left[y_k log(\frac{y_k}{n_k \hat{p}_k})+(n_k - y_k) log (\frac{n_k - y_k}{n_k - n_k \hat{p}_k}) \right]\right]^{\frac{1}{2}}. dk=sign(yknkp^k)×[2[yklog(nkp^kyk)+(nkyk)log(nknkp^knkyk)]]21.
    standardised deviance residual:
    r D K = d k 1 − h k r_{DK}=\frac{d_k}{\sqrt{1 - h_k}} rDK=1hk dk
    h k h_k hk is the leverage of the hat matrix.

    tips: The residuals are not informative if the response is binary of n k n_k nk is small for most covariate patterns, wouldn’t be useful for the outcome variable is binary and the predictor is continuous.

  • Pearson’ s chi-squared statistic
    χ 2 = ∑ i = 1 n ( y i − n i p ^ i ) 2 n i p ^ i ( 1 − p ^ i ) ,     i = 1 , . . n \chi^2=\sum^{n}_{i=1} \frac{(y_i - n_i \hat p_i)^2}{n_i \hat p_i(1 - \hat {p}_i)}, ~~~ i = 1,..n χ2=i=1nnip^i(1p^i)(yinip^i)2,   i=1,..n

  • Pearson residuals
    Pearson or chi-squared residual:
    X k = y k − n k p ^ k n k p ^ k ( 1 − p ^ k ) X_k = \frac{y_k-n_k\hat{p}_k}{\sqrt{n_k \hat{p}_k (1 - \hat{p}_k)}} Xk=nkp^k(1p^k) yknkp^k
    standardised Pearson residual:
    r P K = X K 1 − h k r_{PK}=\frac{X_K}{\sqrt{1 - h_k}} rPK=1hk XK
    h k h_k hk is the leverage of the hat matrix.

  • Likelihood ratio chi-squared statistic
    C = 2 [ l ( p ^ ; y ) − l ( p ~ ; y ) ] ,     w h e r e   p ~ = ∑ y i ∑ x i ,     p ^   i s   u n d e r   M L E C = 2[l(\hat {p} ; y) - l(\tilde{p};y)], ~~~ where ~ \tilde{p} = \frac{\sum y_i}{\sum x_i}, ~~~ \hat p ~ is ~ under ~ MLE C=2[l(p^;y)l(p~;y)],   where p~=xiyi,   p^ is under MLE

  • AIC
    A I C = − 2 l ( p ^ ; y ) + 2 p AIC = -2l(\hat p;y)+2p AIC=2l(p^;y)+2p
    smaller for better

  • BIC
    B I C = − 2 l ( p ^ ; y ) + 2 p × l o g ( n u m b e r   o f   o b s e r v a t i o n s ) BIC = -2l(\hat p;y)+2p \times log(number ~ of ~ observations) BIC=2l(p^;y)+2p×log(number of observations)
    smaller for better

举报

相关推荐

0 条评论