0
点赞
收藏
分享

微信扫一扫

机器学习3

戴老师成长记录仪 2022-04-26 阅读 75
python

1. 实验室介绍

1.1 LightGBM的介绍

LightGBM是2017年由微软推出的可扩展机器学习系统,是微软旗下DMKT的一个开源项目,由2014年首届阿里巴巴大数据竞赛获胜者之一柯国霖老师带领开发。它是一款基于GBDT(梯度提升决策树)算法的分布式梯度提升框架,为了满足缩短模型计算时间的需求,LightGBM的设计思路主要集中在减小数据对内存与计算性能的使用,以及减少多机器并行计算时的通讯代价。

LightGBM可以看作是XGBoost的升级豪华版,在获得与XGBoost近似精度的同时,又提供了更快的训练速度与更少的内存消耗。正如其名字中的Light所蕴含的那样,LightGBM在大规模数据集上跑起来更加优雅轻盈,一经推出便成为各种数据竞赛中刷榜夺冠的神兵利器。

LightGBM的主要优点:

  1. 简单易用。提供了主流的Python\C++\R语言接口,用户可以轻松使用LightGBM建模并获得相当不错的效果。
  2. 高效可扩展。在处理大规模数据集时高效迅速、高准确度,对内存等硬件资源要求不高。
  3. 鲁棒性强。相较于深度学习模型不需要精细调参便能取得近似的效果。
  4. LightGBM直接支持缺失值与类别特征,无需对数据额外进行特殊处理

LightGBM的主要缺点:

  1. 相对于深度学习模型无法对时空位置建模,不能很好地捕获图像、语音、文本等高维数据。
  2. 在拥有海量训练数据,并能找到合适的深度学习模型时,深度学习的精度可以遥遥领先LightGBM。

1.2 LightGBM的应用

LightGBM在机器学习与数据挖掘领域有着极为广泛的应用。据统计LightGBM模型自2016到2019年在Kaggle平台上累积获得数据竞赛前三名三十余次,其中包括CIKM2017 AnalytiCup、IEEE Fraud Detection等知名竞赛。这些竞赛来源于各行各业的真实业务,这些竞赛成绩表明LightGBM具有很好的可扩展性,在各类不同问题上都可以取得非常好的效果。

同时,LightGBM还被成功应用在工业界与学术界的各种问题中。例如金融风控、购买行为识别、交通流量预测、环境声音分类、基因分类、生物成分分析等诸多领域。虽然领域相关的数据分析和特性工程在这些解决方案中也发挥了重要作用,但学习者与实践者对LightGBM的一致选择表明了这一软件包的影响力与重要性。

2. 实验室手册

2.1 学习目标

  • 了解 LightGBM 的参数与相关知识
  • 掌握 LightGBM 的Python调用并将其运用到英雄联盟游戏胜负预测数据集上

2.2 代码流程

Part1 基于英雄联盟数据集的LightGBM分类实践

  • Step1: 库函数导入
  • Step2: 数据读取/载入
  • Step3: 数据信息简单查看
  • Step4: 可视化描述
  • Step5: 利用 LightGBM 进行训练与预测
  • Step6: 利用 LightGBM 进行特征选择
  • Step7: 通过调整参数获得更好的效果
举报

相关推荐

0 条评论