2.1、物理层的基本概念
2.2、物理层下面的传输媒体
传输媒体也称为传输介质或传输媒介,他就是数据传输系统中在发送器和接收器之间的物理通路。传输媒体课分为两大类,即导引型传输媒体和非导引型传输媒体
传输媒体不属于计算机网络体系结构的任何一层。如果非要将它添加到体系结构中,那只能将其放置到物理层之下。
导引型传输媒体
在导引型传输媒体中,电磁波被导引沿着固体媒体传播。
同轴电缆
双绞线
光纤
电力线
非导引型传输媒体
非导引型传输媒体是指自由空间。
无线电波
微波
红外线
可见光
2.3、传输方式
串行传输和并行传输
同步传输和异步传输
单向通信(单工)、双向交替通信(半双工)和双向同时通信(全双工)
在许多情况下,我们要使用“信道(channel)”这一名词。信道和电路并不等同。信道一般都是用来表示向某一个方向传送信息的媒体。因此,一条通信电路往往包含一条发送信道和一条接收信道。
从通信的双方信息交互的方式来看,可以有以下三种基本方式:
单向通信:
又称为单工通信,即只能有一个方向的通信而没有反方向的交互。无线电广播或有线电以及电视广播就属于这种类型
双向交替通信:
又称为半双工通信,即通信的双方可以发送信息,但不能双方同时发送(当然也就不能同时接收)。这种通信方式使一方发送另一方接收,过一段时间后可以再反过来
双向同时通信:
又称为全双工通信,即通信的双发可以同时发送和接收信息。
2.4、编码与调制
在计算机网络中,常见的是将数字基带信号通过编码或调制的方法在相应信道进行传输
传输媒体与信道的关系
严格来说,传输媒体不能和信道划等号
对于单工传输,传输媒体只包含一个信道,要么是发送信道,要么是接收信道
对于半双工和全双工,传输媒体中要包含两个信道,一个发送信道,另一个是接收信道
常用编码
不归零编码
归零编码
曼彻斯特编码
差分曼彻斯特编码
总结
调制
数字信号转换为模拟信号,在模拟信道中传输,例如WiFi,采用补码键控CCK/直接序列扩频DSSS/正交频分复用OFDM等调制方式。
模拟信号转换为另一种模拟信号,在模拟信道中传输,例如,语音数据加载到模拟的载波信号中传输。频分复用FDM技术,充分利用带宽资源。
基本调制方法
混合调制
码元
在使用时间域的波形表示数字信号时,代表不同离散数值的基本波形。
2.5、信道的极限容量
-
任何实际的信道都不是理想的,在传输信号时会产生各种失真以及带来多种干扰。
-
码元传输的速率越高,或信号传输的距离越远,或传输媒体质量越差,在信道的输出端的波形的失真就越严重。
失真的原因:
-
码元传输的速率越高
-
信号传输的距离越远
-
噪声干扰越大
-
传输媒体质量越差
奈氏准则和香农公式对比:
补充:信道复用技术
本节内容视频未讲到,是《计算机网络(第7版)谢希仁》物理层的内容
频分复用、时分复用和统计时分复用
复用 (multiplexing) 是通信技术中的基本概念。
它允许用户使用一个共享信道进行通信,降低成本,提高利用率。
频分复用 FDM (Frequency Division Multiplexing)
-
将整个带宽分为多份,用户在分配到一定的频带后,在通信过程中自始至终都占用这个频带。
-
频分复用的所有用户在同样的时间占用不同的带宽资源(请注意,这里的“带宽”是频率带宽而不是数据的发送速率)。
时分复用TDM (Time Division Multiplexing)
-
时分复用则是将时间划分为一段段等长的时分复用帧(TDM帧)。每一个时分复用的用户在每一个 TDM 帧中占用固定序号的时隙。
-
每一个用户所占用的时隙是周期性地出现(其周期就是TDM帧的长度)的。
-
TDM 信号也称为等时 (isochronous) 信号。
-
时分复用的所有用户在不同的时间占用同样的频带宽度。
-
时分复用可能会造成线路资源的浪费
- 使用时分复用系统传送计算机数据时,由于计算机数据的突发性质,用户对分配到的子信道的利用率一般是不高的。
统计时分复用 STDM (Statistic TDM)
波分复用
波分复用 WDM(Wavelength Division Multiplexing)
码分复用
码分复用 CDM (Code Division Multiplexing)
-
常用的名词是码分多址 CDMA (Code Division Multiple Access)。
-
各用户使用经过特殊挑选的不同码型,因此彼此不会造成干扰。
-
这种系统发送的信号有很强的抗干扰能力,其频谱类似于白噪声,不易被敌人发现。