目录
环境:
初始化摄像头:
cap = cv2.VideoCapture(0) # 通常 '0' 指的是内置摄像头
cap.set(3,1280) #设置摄像头的分辨率为 1280x720
cap.set(4,720)
初始化FaceDetector对象:
detector = FaceDetector(minDetectionCon=0.5, modelSelection=1)
# modelSelection: 0 表示短距离检测(2米),1 表示长距离检测(5米)
获取摄像头帧:
# success: 布尔值,表示是否成功捕获了帧
# img: 捕获的帧
success, img = cap.read() # 从摄像头读取当前帧
# 在图像中检测人脸
# img: 更新后的图像
# bboxs: 检测到的人脸边界框列表
img, bboxs = detector.findFaces(img, draw=False) #在图像中检测人脸,并返回更新后的图像和人脸边界框列表
获取数据:
# ---- 获取数据 ---- #
center = bbox["center"] # 获取人脸中心坐标
x, y, w, h = bbox['bbox'] # 获取边界框的坐标和大小
score = int(bbox['score'][0] * 100) # 获取识别置信度(百分比)
绘制数据:
# ---- 绘制数据 ---- #
cv2.circle(img, center, 5, (255, 0, 255), cv2.FILLED) # 绘制圆形标记人脸中心
cvzone.putTextRect(img, f'{score}%', (x, y - 15), border=5) # 显示识别置信度文本
cvzone.cornerRect(img, (x, y, w, h)) # 绘制矩形框
显示图像:
# 在名为'Image'的窗口中显示图像
cv2.imshow("Image", img)
# 等待1毫秒,如果按下任意键则关闭窗口
cv2.waitKey(1)
完整代码:
#coding=gbk
# 导入必要的库
import cvzone
from cvzone.FaceDetectionModule import FaceDetector
import cv2
import logging
# 配置日志记录
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# 记录日志信息
logging.info('这是一条信息日志')
logging.warning('这是一条警告日志')
logging.error('这是一条错误日志')
# 初始化摄像头
cap = cv2.VideoCapture(0) # 通常 '0' 指的是内置摄像头
cap.set(3,1280) #设置摄像头的分辨率为 1280x720
cap.set(4,720)
# 初始化FaceDetector对象
# minDetectionCon: 最小检测置信度阈值
# modelSelection: 0 表示短距离检测(2米),1 表示长距离检测(5米)
detector = FaceDetector(minDetectionCon=0.5, modelSelection=1)
# 循环获取摄像头帧
while True:
# success: 布尔值,表示是否成功捕获了帧
# img: 捕获的帧
success, img = cap.read() # 从摄像头读取当前帧
# 在图像中检测人脸
# img: 更新后的图像
# bboxs: 检测到的人脸边界框列表
img, bboxs = detector.findFaces(img, draw=False) #在图像中检测人脸,并返回更新后的图像和人脸边界框列表
# 如果检测到人脸
if bboxs:
# 遍历每个边界框
for bbox in bboxs:
# bbox 包含 'id', 'bbox', 'score', 'center'
# ---- 获取数据 ---- #
center = bbox["center"] # 获取人脸中心坐标
x, y, w, h = bbox['bbox'] # 获取边界框的坐标和大小
score = int(bbox['score'][0] * 100) # 获取识别置信度(百分比)
# ---- 绘制数据 ---- #
cv2.circle(img, center, 5, (255, 0, 255), cv2.FILLED) # 绘制圆形标记人脸中心
cvzone.putTextRect(img, f'{score}%', (x, y - 15), border=5) # 显示识别置信度文本
cvzone.cornerRect(img, (x, y, w, h)) # 绘制矩形框
# 在名为'Image'的窗口中显示图像
cv2.imshow("Image", img)
# 等待1毫秒,如果按下任意键则关闭窗口
cv2.waitKey(1)