0
点赞
收藏
分享

微信扫一扫

zookeeper集群+kafka集群 部署

#概述zookeeper

zookeeper集群+kafka集群 部署_zookeeper

ZooKeeper是一个​分布式​的,开放源码的分布式应用程序​协调服务​,是Google​的Chubby一个开源​的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。

ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。

ZooKeeper包含一个简单的原语集,提供Java和C的接口。

ZooKeeper代码版本中,提供了分布式独享锁、选举、队列的接口,代码在$zookeeper_home\src\recipes。其中分布锁和队列有Java和C两个版本,选举只有Java版本。

##Zookeeper 工作机制

zookeeper集群+kafka集群 部署_zookeeper_02

Zookeeper从设计模式角度来理解:是–个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化,Zookeeper就将负责通知已经在Zookeeper上注册的那些观察者做出相应的反应。也就是说​Zookeeper =文件系统+通知机制

每个Server在工作过程中有4种状态:

  • LOOKING:当前Server不知道leader是谁,正在搜寻。
  • LEADING:当前Server即为选举出来的leader。
  • FOLLOWING:leader已经选举出来,当前Server与之同步。
  • OBSERVING:observer的行为在大多数情况下与follower完全一致,但是他们不参加选举和投票,而仅仅接受(observing)选举和投票的结果。

##Zookeeper 特点

  • Zookeeper: 一个领导者(Leader) ,多个跟随者(Follower) 组成的集群
  • Zookeepe集群中只要有半数以上节点存活,Zookeeper集群就能正常服务。所以Zookeeper适合安装奇数台服务器
  • 全局数据一致​:每个Server保存一份相同的数据副本,Client无论连接到哪个Server,数据都是一致的​
  • 更新请求顺序执行,来自同一个Client的更新请求按其发送顺序依次执行,即先进先出
  • 数据更新原子性,一 次数据更新要么成功,要么失败
  • 实时性,在一定时间范围内,Client能读到最新数据

​##Zookeeper 数据结构

zookeeper集群+kafka集群 部署_zookeeper_03

ZooKeeper数据模型的结构与Linux文件系统很类似,整体上可以看作是一棵树,每个节点称做一个ZNode。每.一个 ZNode默认 能够存储1MB的数据,每个ZNode都可以通过其路径唯一标识

##Zookeeper 应用场景

提供的服务包括: 统一命 名服务、统一配置管理、 统一集群管理、服务器节点动态上下线、软负载均衡等

● 统一命名服务:在分布式环境下,经常需要对应用/服务进行统一命名,便于识别。例如: IP不容易记住,而域名容易记住

● 统一配置管理:

  1. 分布式环境下,配置文件同步非常常见。一般要求一个集群中,所有节点的配置信息是–致的,比如Kafka集群。对配置文件修改后,希望能够快速同步到各个节点上
  2. 配置管理可交由ZooKeeper实现。可将配置信息写入ZooKeeper.上的一-个Znode。各个客户端服务器监听这个Znode。一旦Znode中的数据被修改,ZooKeeper将通知各个客户端服务器

● 统一集群管理:

  1. 分布式环境中,实时掌握每个节点的状态是必要的。可根据节点实时状态做出:–些调整
  2. ZooKeeper可以实现实时监控节点状态变化。可将节点信息写入ZooKeeper.上的一个ZNode。监听这个ZNode可获取它的实时状态变化

● 服务器动态上下线:客户端能实时洞察到服务器上下线的变化

● 软负载均衡:在Zookeeper中记录每台服务器的访问数,让访问数最少的服务器去处理最新的客户端请求

##Zookeeper 选举机制

● 第一次启动选举机制

  1. 服务器1启动,发起一次选举。服务器1投自己一票。此时服务器1票数一票, 不够半数以上(3票),选举无法完成,服务器1状态保持为LOOKING;
  2. 服务器2启动,再发起一次选举。服务器1和2分别投自己一票并交换选票信息:此时服务器1发现服务器2的myid比自己目前投票推举的( 服务器1)大,更改选票为推举服务器2。此时服务器1票数0票,服务器2票数2票,没有半数以上结果,选举无法完成,服务器1,2状态保持L00KING;
  3. 服务器3启动,发起一次选举。此时服务器1和2都会更改选票为服务器3。此次投票结果:服务器1为0票,服务器2为0票,服务器3为3票。此时服务器3的票数已经超过半数,服务器3当选Leader。服务器1,2更改状态为FOLLOWING,服务器3更改状态为LEADING; .
  4.  服务器4启动,发起一次选举。此时服务器1,2,3已经不是L00KING状态,不会更改选票信息。交换选票信息结果:服务器3为3票,服务器4为1票。此时服务器4服从多数,更改选票信息为服务器3,并更改状态为FOLLOWING;
  5. 服务器5启动,同4一样当小弟。

● 非第一次启动选举机制

  • 当ZooKeeper集群中的一台服务器出现以下两种情况之一时,就会开始进入Leader选举:
  1. 服务器初始化启动。
  2. 服务器运行期间无法和Leader保持连接。
  • 而当一台机器进入Leader选举流程时,当前集群也可能会处于以下两种状态:
  1. 集群中本来就已经存在一个Leader。对于已经存在Leader的情况,机器试图去选举Leader时,会被告知当前服务器的Leader信息,对于该机器来说,仅仅需要和Leader机器建立连接,并进行状态同步即可
  2. 集群中确实不存在Leader。假设ZooKeeper由5台服务器组成,SID分别为1、2、3、4、5,ZXID分别为8、8、 8、7、7,并且此时SID为3的服务器是Leader。某一时刻,3和5服务器出现故障,因此开始进行Leader选举
  • 选举Leader规则:
  1. EPOCH大的直接胜出
  2. EPOCH相同,事务id大的胜出
  3. 事务id相同,服务器id大的胜出

SID:服务器ID,用来唯一标识一台ZooKeeper集群中的机器,每台机器不能重复,和myid一致

ZXID:事务ID,ZXID是一个事务ID,用来标识一次服务器状态的变更。在某一时刻,集群中的每台机器的8XID值不一定完全一致,这和ZooKeeper服务器对于客户端"更新请求”的处理逻辑速度有关。

Epoch:每个Leader任期的代号,没有Leader时同一轮投票过程中的逻辑时钟值是相同的。每投完一次票这个数据就会增加

#​​部署 Zookeeper 集群

准备3台服务器做Zookeeper集群

  • 192.168.132.53
  • 192.168.132.54
  • 192.168.132.5
1.安装前准备
//关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
setenforce 0

//安装JDK
yum install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel
java -version
//下载安装包
官方下载地址: https://archive.apache.org/dist/zookeeperl

cd /opt
wget https://archive.apache.org/dist/zookeeper/zookeeper-3.5.7/apache-zookeeper-3.5.7-bin.tar.gz

2.安装Zookeeper
cd /opt
tar -zxvf apache-zookeeper-3.5.7-bin.tar.gz
mv apache-zookeeper-3.5.7-bin /usr/local/zookeeper-3.5.7


//修改配置文件
cd /usr/local/zookeeper-3.5.7/conf/
cp zoo_sample.cfg zoo.cfg

vim zoo.cfg
tickTime=2000
#通信心跳时间,Zookeeper服务器与客户端心跳时间,单位毫秒
initLimit=10
#Leader和Follower初始连接时能容忍的最多心跳数(tickTime的数量),这里表示为10*2s
syncLimit=5
#Leader和Follower之间同步通信的超时时间,这里表示如果超过5*2s,Leader认 为Follwer死掉,并从服务器列表中删除Follwer
dataDir=/usr/local/zookeeper-3.5.7/data ●修改,指定保存Zookeeper中的数据的目录,目录需要单独创建
dataLogDir=/usr/local/zookeeper-3.5.7/logs ●添加, 指定存放日志的目录,目录需要单独创建
clientPort=2181
#客户端连接端口

#添加集群信息
server.1=192.168.132.53:3188:3288
server.2=192.168.132.54:3188:3288
server.3=192.168.132.5:3188:3288

---------------------------------------------------------------
server.A=B:C:D
●A是一个数字,表示这个是第几号服务器。集群模式下需要在zoo.cfg中dataDir指定的目录下创建一个文件myid,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server
●B是这个服务器的地址
●c是这个服务器Follower与集群中的Leader服务器交换信息的端口
●D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口
---------------------------------------------------------------

//拷贝配置好的Zookeeper 配置文件到其他机器上
scp /usr/local/zookeeper-3.5.7/conf/zoo.cfg 192.168.132.54:/usr/local/zookeeper-3.5.7/conf/
scp /usr/local/zookeeper-3.5.7/conf/zoo.cfg 192.168.132.5:/usr/local/zookeeper-3.5.7/conf/

//在每个节点上创建数据目录和日志目录
mkdir /usr/local/zookeeper-3.5.7/data
mkdir /usr/local/zookeeper-3.5.7/logs


//在每个节点的dataDir指定的目录下创建一个myid的文件
echo 1 > /usr/local/zookeeper-3.5.7/data/myid
echo 2 > /usr/local/zookeeper-3.5.7/data/myid
echo 3 > /usr/local/zookeeper-3.5.7/data/myid

//配置Zookeeper 启动脚本
vim /etc/init.d/zookeeper
#!/bin/bash
#chkconfig:2345 20 90
#description: Zookeeper Service Control Script
ZK_HOME='/usr/local/zookeeper-3.5.7'
case $1 in
start)
echo "-----zookeeper启动-----"
$ZK_HOME/bin/zkServer.sh start
;;
stop)
echo "----zookeeper停止-------"
$ZK_HOME/bin/ zkServer.sh stop
;;
restart)
echo "----zookeeper重启-------"
$ZK_HOME/bin/zkServer.sh restart
;;
status)
echo "-----zookeeper状态------"
$ZK_HOME/bin/zkServer.sh status
;;
*)
echo "Usage: $0 {start|stop|restart|status}"
esac


//设置开机自启
chmod +x /etc/init.d/zookeeper
chkconfig --add zookeeper

//分别启动 Zookeeper
service zookeeper start

//查看当前状态
service zookeeper status

zookeeper集群+kafka集群 部署_数据_04

zookeeper集群+kafka集群 部署_服务器_05

zookeeper集群+kafka集群 部署_服务器_06

zookeeper集群+kafka集群 部署_服务器_07

zookeeper集群+kafka集群 部署_服务器_08

zookeeper集群+kafka集群 部署_数据_09

zookeeper集群+kafka集群 部署_zookeeper_10

#Kafka 概述

##为什么需要消息列队(MQ)

主要原因是由于在高并发环境下,同步请求来不及处理,请求往往会发生阻塞。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多,从而触发 too many connection 错误,引发雪崩效应。

我们使用消息队列,通过异步处理请求,从而缓解系统的压力。消息队列常应用于异步处理,流量削峰,应用解耦,消息通讯等场景。

当前比较常见的 MQ 中间件有 ActiveMQ、RabbitMQ、RocketMQ、Kafka 等

##使用消息队列的好处

  • 解耦:允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
  • 缓冲:有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况。
  • 灵活性 & 峰值处理能力:在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见。如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费。使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃。
  • 异步通信:很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它。想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们。

##消息队列的两种模式

  1. 点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除):消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息。消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息。消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费
  2. zookeeper集群+kafka集群 部署_zookeeper_11
  3. 发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息):消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息。和点对点方式不同,发布到 topic 的消息会被所有订阅者消费。发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目标对象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新。

zookeeper集群+kafka集群 部署_zookeeper_12

##Kafka 简介

Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域。

Kafka 中,客户端和服务器之间的通信是通过 TCP 协议完成的。

Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replica),基于 Zookeeper 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写,Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目

##Kafka 的特性

  • 高吞吐量、低延迟:Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。
  • 可扩展性:kafka 集群支持热扩展
  • 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失
  • 容错性:允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)
  • 高并发:支持数千个客户端同时读写

##Kafka 系统架构

zookeeper集群+kafka集群 部署_服务器_13

  1. Broker:一台 kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个 broker 可以容纳多个 topic。
  2. Topic:可以理解为一个队列,生产者和消费者面向的都是一个 topic。类似于数据库的表名或者 ES 的 index,物理上不同 topic 的消息分开存储
  3. Partition:为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列。Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序。

每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区,然后将消息追加到指定的分区的队列末尾

Partation 数据路由规则



















































































































































































举报

相关推荐

0 条评论