0
点赞
收藏
分享

微信扫一扫

总结几个好用的CNN模块(Pytorch)


总结几个比较好的CNN模块。

  • SEBlock

代码:

class SEBlock(nn.Module):



def __init__(self, input_channels, internal_neurons):

super(SEBlock, self).__init__()

self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1,

bias=True, padding_mode='same')

self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1,

bias=True, padding_mode='same')



def forward(self, inputs):

x = F.avg_pool2d(inputs, kernel_size=inputs.size(3))

x = self.down(x)

x = F.leaky_relu(x)

x = self.up(x)

x = F.sigmoid(x)

x = x.repeat(1, 1, inputs.size(2), inputs.size(3))

return inputs * x
  • ACBlock

代码

class CropLayer(nn.Module):



# E.g., (-1, 0) means this layer should crop the first and last rows of the feature map. And (0, -1) crops the first and last columns

def __init__(self, crop_set):

super(CropLayer, self).__init__()

self.rows_to_crop = - crop_set[0]

self.cols_to_crop = - crop_set[1]

assert self.rows_to_crop >= 0

assert self.cols_to_crop >= 0



def forward(self, input):

if self.rows_to_crop == 0 and self.cols_to_crop == 0:

return input

elif self.rows_to_crop > 0 and self.cols_to_crop == 0:

return input[:, :, self.rows_to_crop:-self.rows_to_crop, :]

elif self.rows_to_crop == 0 and self.cols_to_crop > 0:

return input[:, :, :, self.cols_to_crop:-self.cols_to_crop]

else:

return input[:, :, self.rows_to_crop:-self.rows_to_crop, self.cols_to_crop:-self.cols_to_crop]

class ACBlock(nn.Module):



def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=1, dilation=1, groups=1,

padding_mode='same', deploy=False,

use_affine=True, reduce_gamma=False, use_last_bn=False, gamma_init=None):

super(ACBlock, self).__init__()

self.deploy = deploy

if deploy:

self.fused_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels,

kernel_size=(kernel_size, kernel_size), stride=stride,

padding=padding, dilation=dilation, groups=groups, bias=True,

padding_mode=padding_mode)

else:

self.square_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels,

kernel_size=(kernel_size, kernel_size), stride=stride,

padding=padding, dilation=dilation, groups=groups, bias=False,

padding_mode=padding_mode)

self.square_bn = nn.BatchNorm2d(num_features=out_channels, affine=use_affine)



center_offset_from_origin_border = padding - kernel_size // 2

ver_pad_or_crop = (padding, center_offset_from_origin_border)

hor_pad_or_crop = (center_offset_from_origin_border, padding)

if center_offset_from_origin_border >= 0:

self.ver_conv_crop_layer = nn.Identity()

ver_conv_padding = ver_pad_or_crop

self.hor_conv_crop_layer = nn.Identity()

hor_conv_padding = hor_pad_or_crop

else:

self.ver_conv_crop_layer = CropLayer(crop_set=ver_pad_or_crop)

ver_conv_padding = (0, 0)

self.hor_conv_crop_layer = CropLayer(crop_set=hor_pad_or_crop)

hor_conv_padding = (0, 0)

self.ver_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(kernel_size, 1),

stride=stride,

padding=ver_conv_padding, dilation=dilation, groups=groups, bias=False,

padding_mode=padding_mode)



self.hor_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(1, kernel_size),

stride=stride,

padding=hor_conv_padding, dilation=dilation, groups=groups, bias=False,

padding_mode=padding_mode)

self.ver_bn = nn.BatchNorm2d(num_features=out_channels, affine=use_affine)

self.hor_bn = nn.BatchNorm2d(num_features=out_channels, affine=use_affine)



if reduce_gamma:

assert not use_last_bn

self.init_gamma(1.0 / 3)



if use_last_bn:

assert not reduce_gamma

self.last_bn = nn.BatchNorm2d(num_features=out_channels, affine=True)



if gamma_init is not None:

assert not reduce_gamma

self.init_gamma(gamma_init)



def init_gamma(self, gamma_value):

init.constant_(self.square_bn.weight, gamma_value)

init.constant_(self.ver_bn.weight, gamma_value)

init.constant_(self.hor_bn.weight, gamma_value)

print('init gamma of square, ver and hor as ', gamma_value)



def single_init(self):

init.constant_(self.square_bn.weight, 1.0)

init.constant_(self.ver_bn.weight, 0.0)

init.constant_(self.hor_bn.weight, 0.0)

print('init gamma of square as 1, ver and hor as 0')



def forward(self, input):

if self.deploy:

return self.fused_conv(input)

else:

square_outputs = self.square_conv(input)

square_outputs = self.square_bn(square_outputs)

vertical_outputs = self.ver_conv_crop_layer(input)

vertical_outputs = self.ver_conv(vertical_outputs)

vertical_outputs = self.ver_bn(vertical_outputs)

horizontal_outputs = self.hor_conv_crop_layer(input)

horizontal_outputs = self.hor_conv(horizontal_outputs)

horizontal_outputs = self.hor_bn(horizontal_outputs)

result = square_outputs + vertical_outputs + horizontal_outputs

if hasattr(self, 'last_bn'):

return self.last_bn(result)

return result
  •  eca_layer

class eca_layer(nn.Module):
"""Constructs a ECA module.

Args:
channel: Number of channels of the input feature map
k_size: Adaptive selection of kernel size
"""
def __init__(self, channel, k_size=3):
super(eca_layer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
self.sigmoid = nn.Sigmoid()

def forward(self, x):
# x: input features with shape [b, c, h, w]
b, c, h, w = x.size()

# feature descriptor on the global spatial information
y = self.avg_pool(x)

# Two different branches of ECA module
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)

# Multi-scale information fusion
y = self.sigmoid(y)

return x * y.expand_as(x)
  • ChannelAttention

class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
self.relu1 = nn.LeakyReLU(negative_slope=0.01, inplace=False)
self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)

self.sigmoid = nn.Sigmoid()

def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
  •  ConvBN

class ConvBN(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, groups=1):
if not isinstance(kernel_size, int):
padding = [(i - 1) // 2 for i in kernel_size]
else:
padding = (kernel_size - 1) // 2
super(ConvBN, self).__init__(OrderedDict([
('conv', nn.Conv2d(in_planes, out_planes, kernel_size, stride,
padding=padding, groups=groups, bias=False)),
('bn', nn.BatchNorm2d(out_planes)),
#('Mish', Mish())
('Mish', nn.LeakyReLU(negative_slope=0.3, inplace=False))
]))
  • ResBlock

    class ResBlock(nn.Module):
    """
    Sequential residual blocks each of which consists of \
    two convolution layers.
    Args:
    ch (int): number of input and output channels.
    nblocks (int): number of residual blocks.
    shortcut (bool): if True, residual tensor addition is enabled.
    """

    def __init__(self, ch, nblocks=1, shortcut=True):
    super().__init__()
    self.shortcut = shortcut
    self.module_list = nn.ModuleList()
    for i in range(nblocks):
    resblock_one = nn.ModuleList()
    resblock_one.append(ConvBN(ch, ch, 1))
    resblock_one.append(Mish())
    resblock_one.append(ConvBN(ch, ch, 3))
    resblock_one.append(Mish())
    self.module_list.append(resblock_one)

    def forward(self, x):
    for module in self.module_list:
    h = x
    for res in module:
    h = res(h)
    x = x + h if self.shortcut else h
    return x







举报

相关推荐

0 条评论