这两天在学习xxl-job时,任务调度的路由策略中提供了一致性HASH策略,那么简单了解一下它的原理。下边我们以分布式缓存中经典场景举例,面试中也是经常提及的一些话题,看看什么是一致性hash算法以及它有那些过人之处。
正文介绍之前,先补充回忆一下轮询和hash算法的区别,为什么有hash算法。
轮询和Hash算法的区别
轮询和Hash算法都可以对数据或请求均匀分配,但轮询对于一个客户端的多次请求,每次落到的服务器很大可能是不同的,如果这是一台缓存服务器,就会对缓存同步带来很大挑战。尤其是系统繁忙时,主从延迟带来的同步缓慢,可能会造成同一客户端两次访问得到不同的结果。解决方案就是,利用哈希算法定位到对应的服务器。
所以,哈希与一致性策略的优点是,哈希函数设置合理的话,负载会比较均衡。而且,相同key 的请求会落在同一个服务节点上。
构建场景
假如我们有三台缓存服务器编号node0
、node1
、node2
,现在有3000万个key
,希望可以将这些个key均匀的缓存到三台机器上,你会想到什么方案呢?
我们可能首先想到的方案,是取模算法hash(key)% N
,对key进行hash运算后取模,N是机器的数量。key进行hash后的结果对3取模,得到的结果一定是0、1或者2,正好对应服务器node0
、node1
、node2
,存取数据直接找对应的服务器即可,简单粗暴,完全可以解决上述的问题。
hash的问题
取模算法虽然使用简单,但对机器数量取模,在集群扩容和收缩时却有一定的局限性,因为在生产环境中根据业务量的大小,调整服务器数量是常有的事;而服务器数量N发生变化后hash(key)% N
计算的结果也会随之变化。
比如:一个服务器节点挂了,计算公式从hash(key)% 3
变成了hash(key)% 2
,结果会发生变化,此时想要访问一个key,这个key的缓存位置大概率会发生改变,那么之前缓存key的数据也会失去作用与意义。
大量缓存在同一时间失效,造成缓存的雪崩,进而导致整个缓存系统的不可用,这基本上是不能接受的,为了解决优化上述情况,一致性hash算法应运而生~
那么,一致性哈希算法又是如何解决上述问题的?
一致性hash
一致性hash算法本质上也是一种取模算法,不过,不同于上边按服务器数量取模,一致性hash是对固定值2^32取模。
hash环
我们可以将这2^32个值抽象成一个圆环(**不得意圆的,自己想个形状,好理解就行**),圆环的正上方的点代表0,顺时针排列,以此类推,1、2、3、4、5、6……直到232-1,而这个由2的32次方个点组成的圆环统称 hash环
。
服务器映射到hash环
这个时候计算公式就从hash(key)% N 变成了**hash(服务器ip)% 2^32**,使用服务器IP地址进行hash计算,用哈希后的结果对2^32取模,结果一定是一个0到2^32-1之间的整数,而这个整数映射在hash环上的位置代表了一个服务器,依次将node0
、node1
、node2
三个缓存服务器映射到hash环上。
对象key映射到hash环
接着在将需要缓存的key对象也映射到hash环上,hash(key)% 2^32,服务器节点和要缓存的key对象都映射到了hash环,那对象key具体应该缓存到哪个服务器上呢?
对象key映射到服务器
因为被缓存对象与服务器hash后的值是固定的,所以,在服务器不变的条件下,对象key必定会被缓存到固定的服务器上。根据上边的规则,下图中的映射关系:
-
key-1 -> node-1
-
key-3 -> node-2
-
key-4 -> node-2
-
key-5 -> node-2
-
key-2 -> node-0
一致性hash的优势
我们简单了解了一致性hash的原理,那它又是如何优化集群中添加节点和缩减节点,普通取模算法导致的缓存服务,大面积不可用的问题呢?
先来看看扩容的场景,假如业务量激增,系统需要进行扩容增加一台服务器node-4
,刚好node-4
被映射到node-1
和node-2
之间,沿顺时针方向对象映射节点,发现原本缓存在node-2
上的对象key-4
、key-5
被重新映射到了node-4
上,而整个扩容过程中受影响的只有node-4
和node-1
节点之间的一小部分数据。
反之,假如node-1
节点宕机,沿顺时针方向对象映射节点,缓存在node-1
上的对象key-1
被重新映射到了node-4
上,此时受影响的数据只有node-0
和node-1
之间的一小部分数据。
从上边的两种情况发现,当集群中服务器的数量发生改变时,一致性hash算只会影响少部分的数据,保证了缓存系统整体还可以对外提供服务的。
数据偏斜问题
前边为了便于理解原理,画图中的node节点都很理想化的相对均匀分布,但理想和实际的场景往往差别很大,就比如办了个健身年卡的我,只去过健身房两次,还只是洗了个澡。
在服务器节点数量太少的情况下,很容易因为节点分布不均匀而造成数据倾斜问题,如下图被缓存的对象大部分缓存在node-4
服务器上,导致其他节点资源浪费,系统压力大部分集中在node-4
节点上,这样的集群是非常不健康的。
解决数据倾斜的办法也简单,我们就要想办法让节点映射到hash环上时,相对分布均匀一点。
一致性Hash算法引入了一个虚拟节点机制,即对每个服务器节点计算出多个hash值,它们都会映射到hash环上,映射到这些虚拟节点的对象key,最终会缓存在真实的节点上。
虚拟节点的hash计算通常可以采用,对应节点的IP地址加数字编号后缀 hash(10.24.23.227#1) 的方式,举个例子,node-1节点IP为10.24.23.227,正常计算node-1
的hash值。
hash(10.24.23.227#1)% 2^32
假设我们给node-1设置三个虚拟节点,node-1#1
、node-1#2
、node-1#3
,对它们进行hash后取模。
-
hash(10.24.23.227#1)% 2^32
-
hash(10.24.23.227#2)% 2^32
-
hash(10.24.23.227#3)% 2^32
下图加入虚拟节点后,原有节点在hash环上分布的就相对均匀了,其余节点压力得到了分摊。
引入虚拟节点的同时也增加了新的问题,要做虚拟节点和真实节点间的映射,对象key->虚拟节点->实际节点
之间的转换。
一致性hash的应用场景
一致性hash在分布式系统中应该是实现负载均衡的首选算法,它的实现比较灵活,既可以在客户端实现,也可以在中间件上实现,比如日常使用较多的缓存中间件memcached
和redis
集群都有用到它。