common/wrapper.py模块:
import gym
class TimeLimit(gym.Wrapper):
def __init__(self, env, max_episode_steps=None):
super(TimeLimit, self).__init__(env)
self._max_episode_steps = max_episode_steps
self._elapsed_steps = 0
def step(self, ac):
observation, reward, done, info = self.env.step(ac)
self._elapsed_steps += 1
if self._elapsed_steps >= self._max_episode_steps:
done = True
info['TimeLimit.truncated'] = True
return observation, reward, done, info
def reset(self, **kwargs):
self._elapsed_steps = 0
return self.env.reset(**kwargs)
class ClipActionsWrapper(gym.Wrapper):
def step(self, action):
import numpy as np
action = np.nan_to_num(action)
action = np.clip(action, self.action_space.low, self.action_space.high)
return self.env.step(action)
def reset(self, **kwargs):
return self.env.reset(**kwargs)
两个对gym环境类的包装类,TimeLimit限制环境类env的最大step数,如果到达最大step数后游戏还没有终止则强制返回终止状态done=True,并设置返回信息:info['TimeLimit.truncated'] = True 。
类ClipActionsWrapper对输入给gym环境的动作进行包装,如果输入的action(action为numpy向量)中含有np.nan则置为0,
如果action中的数值大小超过action_space.low和action_space.high则进行clip操作。
============================================