问题描述
思路
简单的模板DP
代码
#include<cstdio>
int a[100010];
int p[100010];
int b[100010];
int main () {
int i = 0, len1 = 0, ans;
while (1) {
scanf ("%d", &a[++i]);
if (getchar ()!= ' ') break;
}
int n = i;
b[0] = 100000;
b[++len1] = a[1];
for (i = 2; i<= n; i++) {
if (a[i]<= b[len1]) {
b[++len1] = a[i];
}
else{
int l = 0, r = len1, mid;
while (l<= r) {
mid = l+ (r-l)/2;
if (a[i]<= b[mid]) {
ans = mid;
l = mid+1 ;
}
else r = mid-1;
}
b[ans+1] = a[i];
}
}
printf ("%d\n", len1);
int sum = 0;
int m = 0;
while (m<n) {
int last = 100000000;
for (int j = 1; j<= n; j++) {
if (a[j]>0 && a[j]<= last) {
m++;
last = a[j];
a[j] = -1;
}
}
sum++;
}
printf ("%d", sum);
}
#include<stdio.h>
#define N 30000
#define max(a,b) ((a)>(b)?(a):(b))
//DP 最长上升子序列与最长下降子序列
int main(){
int a[N],up[N]={0},down[N]={0};
int i=0,j,k,ans=0,cnt=0;
while(1){
scanf("%d",&a[i++]);
char ch=getchar();
if(ch=='\n')break;
}
for(k=0;k<i;k++){
up[k]=1; //up[k]为以a[k]为结尾的最长不下降子序列的长度
down[k]=1; //down[k]为以a[k]为结尾的最长下降子序列的长度
for(j=0;j<k;j++){
if(a[j]>a[k]){
//最长下降子序列
down[k]=max(down[j]+1,down[k]);
}
else{
//最长不下降子序列
up[k]=max(up[j]+1,up[k]);
}
}
ans=max(ans,down[k]);
cnt=max(cnt,up[k]);
}
printf("%d\n%d",ans,cnt);
return 0;
}
↑ 来自蓝桥杯算法训练 拦截导弹(动态规划 C语言)_hys__handsome的博客-CSDN博客的代码