library("clusterProfiler")
library("org.Hs.eg.db")
GO分析
GO分析需要一个基因 symbol列表,列表中为差异表达基因。
一、读入数据
result<- read.csv(file = "Results/gleason high vs low_DESeq2差异分析/gleason high vs low_result.csv", header=T, row.names=1,check.names=FALSE)
t_index=result$Change %in% c('up','down')
DEG_symbol=rownames(result)[t_index]
这里以gleason high vs low_result.csv为例,得到的DEG_symbol即为所需要的 symbol列表
View(result)
二、symbol转换为entrezid
1 转换
DEG_entrezid = mapIds(x = org.Hs.eg.db,
keys = DEG_symbol,
keytype = "SYMBOL",
column = "ENTREZID") #存在NA
转换后的DEG_entrezid是character vector,其中有NA值
2 去除DEG_entrezid中的NA值
DEG_entrezid=na.omit(DEG_entrezid)
na.omit()函数能去除所有含有NA的行
三、GO分析与可视化
GO_BP = enrichGO(gene = DEG_entrezid,
OrgDb = org.Hs.eg.db,
keyType = "ENTREZID",
ont = "BP", #'BP','CC','MF'
pvalueCutoff = 0.5,
qvalueCutoff = 0.5)
#结果可视化
dotplot(GO_BP,showCategory=5) #showCategory=5,展示5个通路
barplot(GO_BP,showCategory=5,drop=F)
dotplot
barplot