0
点赞
收藏
分享

微信扫一扫

pandas 3----DataFrame运算

ITWYY 2022-01-17 阅读 58
python

文章目录

一、算术运算-add,sub,mul,div

在这里插入图片描述

二、逻辑运算

1. 例如筛选p_change > 2的日期数据

data['p_change'] > 2

2018-02-27     True
2018-02-26     True
2018-02-23     True
2018-02-22    False
2018-02-14     True
# 逻辑判断的结果可以作为筛选的依据
data[data['p_change'] > 2]

pen    high    close    low    volume    price_change    p_change    turnover    my_price_change
2018-02-27    23.53    25.88    24.16    23.53    95578.03    0.63    2.68    2.39    0.63
2018-02-26    22.80    23.78    23.53    22.80    60985.11    0.69    3.02    1.53    0.73
2018-02-23    22.88    23.37    22.82    22.71    52914.01    0.54    2.42    1.32    -0.06
2018-02-14    21.49    21.99    21.92    21.48    23331.04    0.44    2.05    0.58    0.43
2018-02-12    20.70    21.40    21.19    20.63    32445.39    0.82    4.03    0.81    0.49

2. 完成一个多个逻辑判断, 筛选p_change > 2并且open > 15

data[(data['p_change'] > 2) & (data['open'] > 15)]

open    high    close    low    volume    price_change    p_change    turnover    my_price_change
2017-11-14    28.00    29.89    29.34    27.68    243773.23    1.10    3.90    6.10    1.34
2017-10-31    32.62    35.22    34.44    32.20    361660.88    2.38    7.42    9.05    1.82
2017-10-27    31.45    33.20    33.11    31.45    333824.31    0.70    2.16    8.35    1.66
2017-10-26    29.30    32.70    32.41    28.92    501915.41    2.68    9.01    12.56    3.11

3. 用逻辑运算函数query(values)和isin(values)

在这里插入图片描述

三、统计运算

1. describe() 一下子全部求出来

综合分析: 能够直接得出很多统计结果,count, mean, std, min, max 等

2.统计函数

Numpy当中已经详细介绍,在这里我们演示min(最小值), max(最大值), mean(平均值), median(中位数), var(方差), std(标准差),mode(众数)结果,
在这里插入图片描述

3.累计统计函数

在这里插入图片描述
举个例子:
在这里插入图片描述

4.自定义运算

  • apply(func, axis=0)
    • func:自定义函数
    • axis=0:默认是列,axis=1为行进行运算
  • 定义一个对列,最大值-最小值的函数
data[['open', 'close']].apply(lambda x: x.max() - x.min(), axis=0)

open     22.74
close    22.85
dtype: float64

四、小结

在这里插入图片描述

举报

相关推荐

0 条评论