0
点赞
收藏
分享

微信扫一扫

自动化操作读写Excel —— xlrd 和 xlwt 模块参数说明与代码实战【第95篇—自动化操作读写Excel 】

后来的六六 2024-02-25 阅读 5

question:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib

Opencv

一、读取图片

(1).imshow

Mat imread(const string& filename, intflags=1 );

flags:
enum
{
/* 8bit, color or not */
   CV_LOAD_IMAGE_UNCHANGED  =-1,
/* 8bit, gray */
   CV_LOAD_IMAGE_GRAYSCALE  =0,
/* ?, color */
   CV_LOAD_IMAGE_COLOR      =1,
/* any depth, ? */
   CV_LOAD_IMAGE_ANYDEPTH   =2,
/* ?, any color */
   CV_LOAD_IMAGE_ANYCOLOR   =4
};

Mat image0=imread("dota.jpg",CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR);//载入最真实的图像
Mat image1=imread("dota.jpg",0);//载入灰度图
Mat image2=imread("dota.jpg",199);//载入3通道的彩色图像
Mat logo=imread("dota_logo.jpg");//载入3通道的彩色图像
  • CV_LOAD_IMAGE_UNCHANGED,这个标识在新版本中被废置了,忽略。
  • CV_LOAD_IMAGE_ANYDEPTH- 如果取这个标识的话,若载入的图像的深度为16位或者32位,就返回对应深度的图像,否则,就转换为8位图像再返回。
  • CV_LOAD_IMAGE_COLOR- 如果取这个标识的话,总是转换图像到彩色一体
  • CV_LOAD_IMAGE_GRAYSCALE- 如果取这个标识的话,始终将图像转换成灰度

  • flags >0返回一个3通道的彩色图像。
  • flags =0返回灰度图像。
  • flags <0返回包含Alpha通道的加载的图像。

(2).namedWindow

void namedWindow(const string& winname,int flags=WINDOW_AUTOSIZE ); 
  • WINDOW_NORMAL设置了这个值,用户便可以改变窗口的大小(没有限制)
  • WINDOW_AUTOSIZE如果设置了这个值,窗口大小会自动调整以适应所显示的图像,并且不能手动改变窗口大小。
  • WINDOW_OPENGL 如果设置了这个值的话,窗口创建的时候便会支持OpenGL。

(3).imshow

void imshow(const string& winname, InputArray mat);

(4).效果图

c++

python

二、像素操作

(1).访问像素

1. at()
image.at<uchar>(j,i)= value;  //单通道
image.at<cv::Vec3b>(j,i)[channel]= value;  //三通道
image.at<cv::Vec3b>(j,i) = cv::Vec3b(a,b,c);
2.Mat_
cv::Mat_<uchar> image(image1);
image(20,30) = value;

(2).遍历像素

1.指针遍历
uchar *data = image.ptr<uchar>(i);  //ptr()返回行的地址
for (int i = 0; i < height; i++) {
    cv::Vec3b* row = image.ptr<cv::Vec3b>(i);
    for (int j = 0; j < width; j++) {
        cv::Vec3b& pixel = row[j];//Vec3b&直接操作图像中的像素值,而不需要创建新的对象
        std::cout << "Pixel at (" << i << "," << j << "): "
                  << "B=" << (int)pixel[0] << " "
                  << "G=" << (int)pixel[1] << " "
                  << "R=" << (int)pixel[2] << std::endl;
    }
}
2.迭代器遍历
cv::MatIterator_ <cv::Vec3b> it;
或者
cv::Mat_<cv::Vec3b>::iterator it;
cv::MatIterator_<cv::Vec3b> it, end;
for (it = image.begin<cv::Vec3b>(), end = image.end<cv::Vec3b>(); it != end; ++it) {
    
    cv::Vec3b& pixel = *it;
    
    pixel[0] = 255; 
    pixel[1] = 0; 
    pixel[2] = 0; 
}

python

c++

(3).threshold

double cv::threshold(src, OutputArray, thresh, maxval, type)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

c++:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

python:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(4).通道分离

1.split
C++: void split(const Mat& src, Mat*mvbegin);
C++: void split(InputArray m,OutputArrayOfArrays mv);
2.merge
C++: void merge(const Mat* mv, size_tcount, OutputArray dst)
C++: void merge(InputArrayOfArrays mv,OutputArray dst)

c++

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

python

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(5)Gamma矫正

Gamma校正是对输入图像灰度值进行的非线性操作,使输出图像灰度值与输入图像灰度值呈指数关系。Gamma矫正用于调整图像的亮度和对比度。Gamma矫正可以改变图像的灰度值分布,使图像在显示时看起来更加自然和逼真。通常情况下,人眼对亮度的感知是非线性的,因此使用Gamma矫正可以更好地模拟人眼的感知特性。
V o u t = A V i n γ V_{out}=AV_{in}^\gamma Vout=AVinγ
γ的值决定了输入图像和输出图像之间的灰度映射方式,即决定了是增强低灰度值区域还是增高灰度值区域。
γ>1时,图像的高灰度区域对比度得到增强,直观效果是一幅偏亮的图变暗了下来。
γ<1时,图像的低灰度区域对比度得到增强,直观效果是一幅偏暗的图变亮了起来。

python

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

c++

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

(6).深浅拷贝

浅拷贝是指当图像之间进行赋值时,图像数据并未发生复制,而是两个对象都指向同一块内存块。

深拷贝是指新创建的图像拥有原始图像的崭新拷贝

c++

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

python

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

三、基本绘图

(1).line

void cv::line(InputOutputArray img,Point pt1, Point pt2, const Scalar & color, int  thickness = 1, int  lineType = LINE_8, int  shift = 0)
imgImage.
pt1First point of the line segment.
pt2Second point of the line segment.
colorLine color.
thicknessLine thickness.
lineTypeType of the line. See LineTypes.
shiftNumber of fractional bits in the point coordinates.

(2).rectangle

void cv::rectangle(InputOutputArray img, Point pt1, Point pt2, const Scalar & color, int  thickness = 1,int  lineType = LINE_8, int  shift = 0)
 
void cv::rectangle(InputOutputArray img, Rect rec, const Scalar & color, int  thickness = 1,int  lineType = LINE_8, int  shift = 0)            

(3).circle

void cv::circle(InputOutputArray img, Point center,  int  radius, const Scalar & color, int  thickness = 1, int  lineType = LINE_8, int  shift = 0)

python

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

c++

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

四、图像处理

(1).颜色空间

1.意义
  • RGB 颜色空间利用三个颜色分量的线性组合来表示颜色,任何颜色都与这三个分量有关,而且这三个分量是高度相关的,所以连续变换颜色时并不直观,想对图像的颜色进行调整需要更改这三个分量才行。

  • 自然环境下获取的图像容易受自然光照、遮挡和阴影等情况的影响,即对亮度比较敏感。而 RGB 颜色空间的三个分量都与亮度密切相关,即只要亮度改变,三个分量都会随之相应地改变,而没有一种更直观的方式来表达。

  • 在图像处理中使用较多的是 HSV 颜色空间,它比 RGB 更接近人们对彩色的感知经验。非常直观地表达颜色的色调、鲜艳程度和明暗程度,方便进行颜色的对比。

H(色调/hue) |

S(饱和度/saturation) |

V(明度/Value) |

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.cvtColor()
void cv::cvtColor(InputArray src, OutputArray dst, int code, int dstCn=0)
  • src:输入图像,可以是Mat类型的图像或者其他支持的图像数据结构。
  • dst:输出图像,用于存储转换后的图像。
  • code:颜色空间转换的代码,例如CV_BGR2GRAY表示将BGR颜色空间转换为灰度图像。
  • dstCn:输出图像的通道数,如果为0,则自动根据code参数确定通道数。
3.inRange()
void inRange(InputArray src, InputArray lowerb,InputArray upperb, OutputArray dst);
void inRange(image, Scalar(hmin,smin,vmin), Scalar(hmax,smax,vmax), image);
//typedef Vec<double, 4> Scalar;

python:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

c++:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

4.适应光线

光线较暗 -> 暗色调 ; 增加饱和度S ;减小亮度V

光线较亮 -> 亮色调 ; 减小饱和度S ;增大亮度V

(2).形态操作

1.腐蚀

腐蚀的基本概念就像土壤侵蚀一样,只侵蚀前景对象的边界(总是尽量保持前景为白色)。那它有什么作用呢?内核在图像中滑动(如二维卷积)。只有当内核下的所有像素都为 1 时,原始图像中的像素(1 或 0)才会被视为 1,否则会被侵蚀(变为零)。

C++: void erode(
	InputArray src,
	OutputArray dst,
	InputArray kernel,
	Point anchor=Point(-1,-1),
	int iterations=1,
	int borderType=BORDER_CONSTANT,
	const Scalar& borderValue=morphologyDefaultBorderValue()
 );	
 int g_nStructElementSize = 3; //结构元素(内核矩阵)的尺寸
 
//获取自定义核
Mat element = getStructuringElement(MORPH_RECT,
	Size(2*g_nStructElementSize+1,2*g_nStructElementSize+1),
	Point( g_nStructElementSize, g_nStructElementSize ));
2.膨胀

它与腐蚀正好相反。这里,如果内核下至少有一个像素为“1”,则像素元素为“1”。所以它会增加图像中的白色区域,或者增加前景对象的大小。通常情况下,在去除噪音的情况下,腐蚀后会膨胀。因为,腐蚀消除了白噪声,但它也缩小了我们的对象。所以我们扩大它。由于噪音消失了,它们不会再回来,但我们的目标区域会增加到腐蚀之前的状态。它还可用于连接对象的断开部分。

C++: void dilate(
	InputArray src,
	OutputArray dst,
	InputArray kernel,
	Point anchor=Point(-1,-1),
	int iterations=1,
	int borderType=BORDER_CONSTANT,
	const Scalar& borderValue=morphologyDefaultBorderValue() 
);
3.开/闭运算
  • 开运算(Opening Operation),其实就是先腐蚀后膨胀的过程。开运算可以用来消除小物体、在纤细点处分离物体、平滑较大物体的边界的同时并不明显改变其面积。

  • 先膨胀后腐蚀的过程称为闭运算(Closing Operation),闭运算能够排除小型黑洞(黑色区域)。

C++: void morphologyEx(
InputArray src,
OutputArray dst,
int op,
InputArraykernel,
Pointanchor=Point(-1,-1),
intiterations=1,
intborderType=BORDER_CONSTANT,
constScalar& borderValue=morphologyDefaultBorderValue() 
);

第三个参数,int类型的op,表示形态学运算的类型,可以是如下之一的标识符:

  • MORPH_OPEN – 开运算(Opening operation)
  • MORPH_CLOSE – 闭运算(Closing operation)
  • MORPH_GRADIENT -形态学梯度(Morphological gradient)
  • MORPH_TOPHAT - “顶帽”(“Top hat”)
  • MORPH_BLACKHAT - “黑帽”(“Black hat“)
  • MORPH_ERODE-“腐蚀”
  • MORPH_DILATE-“膨胀”

c++

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

python

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

4.error

problem : /…/lib/libstdc++.so.6: version `GLIBCXX_3.4.30’ not found

solve : 系统环境下 /usr/lib/x86_64-linux-gnu/libstdc++.so.6 文件含有GLIBCXX_3.4.30版本,而anaconda环境下libstdc++.so.6文件含有的最高版本为GLIBCXX_3.4.29,因此有了前面的报错。

rm libstdc++.so 
rm libstdc++.so.6
ln -s /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.32 libstdc++.so
ln -s /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.32 libstdc++.so.6

(3).Ganny边缘检测

举报

相关推荐

0 条评论