0
点赞
收藏
分享

微信扫一扫

PyTorch 1.0 文档翻译活动期待大家的参与 | ApacheCN

小磊z 2023-07-14 阅读 93


参与方式:https://github.com/apachecn/pytorch-doc-zh/blob/master/CONTRIBUTING.md

整体进度:https://github.com/apachecn/pytorch-doc-zh/issues/274

项目仓库:https://github.com/apachecn/pytorch-doc-zh

贡献指南

请您勇敢地去翻译和改进翻译。虽然我们追求卓越,但我们并不要求您做到十全十美,因此请不要担心因为翻译上犯错——在大部分情况下,我们的服务器已经记录所有的翻译,因此您不必担心会因为您的失误遭到无法挽回的破坏。(改编自维基百科)

可能有用的链接:

  • 1.0 英文文档
  • 1.0 英文教程
  • 0.3 中文教程 & 文档
  • 0.4 中文文档

章节列表

  • Getting Started
  • Deep Learning with PyTorch: A 60 Minute Blitz
  • What is PyTorch?
  • Autograd: Automatic Differentiation
  • Neural Networks
  • Training a Classifier
  • Optional: Data Parallelism
  • Data Loading and Processing Tutorial
  • Learning PyTorch with Examples
  • Transfer Learning Tutorial
  • Deploying a Seq2Seq Model with the Hybrid Frontend
  • Saving and Loading Models
  • What is <cite>torch.nn</cite> really?
  • Image
  • Finetuning Torchvision Models
  • Spatial Transformer Networks Tutorial
  • Neural Transfer Using PyTorch
  • Adversarial Example Generation
  • Transfering a Model from PyTorch to Caffe2 and Mobile using ONNX
  • Text
  • Chatbot Tutorial
  • Generating Names with a Character-Level RNN
  • Classifying Names with a Character-Level RNN
  • Deep Learning for NLP with Pytorch
  • Introduction to PyTorch
  • Deep Learning with PyTorch
  • Word Embeddings: Encoding Lexical Semantics
  • Sequence Models and Long-Short Term Memory Networks
  • Advanced: Making Dynamic Decisions and the Bi-LSTM CRF
  • Translation with a Sequence to Sequence Network and Attention
  • Generative
  • DCGAN Tutorial
  • Reinforcement Learning
  • Reinforcement Learning (DQN) Tutorial
  • Extending PyTorch
  • Creating Extensions Using numpy and scipy
  • Custom C++ and CUDA Extensions
  • Extending TorchScript with Custom C++ Operators
  • Production Usage
  • Writing Distributed Applications with PyTorch
  • PyTorch 1.0 Distributed Trainer with Amazon AWS
  • ONNX Live Tutorial
  • Loading a PyTorch Model in C++
  • PyTorch in Other Languages
  • Using the PyTorch C++ Frontend

流程

一、认领

首先查看整体进度,确认没有人认领了你想认领的章节。

然后回复 ISSUE,注明“章节 + QQ 号”(一定要留 QQ)。

二、翻译

可以合理利用翻译引擎(例如谷歌),但一定要把它变得可读!

可以参照之前版本的中文文档,如果有用的话。

如果遇到格式问题,请随手把它改正。

三、提交

  • fork Github 项目
  • 将译文放在docs/1.0文件夹下
  • push
  • pull request

请见 Github 入门指南。


举报

相关推荐

0 条评论