0
点赞
收藏
分享

微信扫一扫

CodeForces 293E Close Vertices


Description



You've got a weighted tree, consisting of n

Two vertices are close if there exists a path of length at most l between them and a path of weight at most w between them. Count the number of pairs of vertices v, u(v < u), such that vertices v and u


Input



The first line contains three integers nl and w(1 ≤ n ≤ 105, 1 ≤ l ≤ n, 0 ≤ w ≤ 109). The next n - 1 lines contain the descriptions of the tree edges. The i-th line contains two integers pi, wi(1 ≤ pi < (i + 1), 0 ≤ wi ≤ 104), that mean that the i-th edge connects vertex (i + 1) and pi and has weight wi.

Consider the tree vertices indexed from 1 to n


Output



Print a single integer — the number of close pairs.

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64dspecifier.


Sample Input



Input



4 4 6 1 3 1 4 1 3



Output



4



Input



6 2 17 1 3 2 5 2 13 1 6 5 9



Output



9

树分治,然后里面是二维点对的处理,这个怎么做可以参考之前我写的关于偏序的问题的处理方法。

这里可以直接排序加树状数组维护,为了方便一点我直接写的cdq分治。

#include<queue>
#include<cstdio>
#include<vector>
#include<iostream>
#include<algorithm>
using namespace std;
typedef __int64 LL;
const int INF = 0x7FFFFFFF;
const int maxn = 2e5 + 10;
int n, l, w, x, y;

struct Tree
{
int ft[maxn], nt[maxn], u[maxn], v[maxn], sz;
int mx[maxn], ct[maxn], vis[maxn], t;
struct point
{
int x, y, z;
point(int x = 0, int y = 0, int z = 0) :x(x), y(y), z(z) {};
bool operator<(const point&a)const
{
return x == a.x ? y == a.y ? z < a.z : y < a.y : x < a.x;
}
}a[maxn], b[maxn];

void clear(int n)
{
mx[sz = 0] = INF;
for (int i = 1; i <= n; i++) ft[i] = -1, vis[i] = 0;
}
void AddEdge(int x, int y, int z)
{
u[sz] = y; v[sz] = z; nt[sz] = ft[x]; ft[x] = sz++;
u[sz] = x; v[sz] = z; nt[sz] = ft[y]; ft[y] = sz++;
}
int dfs(int x, int fa, int sum)
{
int y = mx[x] = (ct[x] = 1) - 1;
for (int i = ft[x]; i != -1; i = nt[i])
{
if (vis[u[i]] || u[i] == fa) continue;
int z = dfs(u[i], x, sum);
ct[x] += ct[u[i]];
mx[x] = max(mx[x], ct[u[i]]);
y = mx[y] < mx[z] ? y : z;
}
mx[x] = max(mx[x], sum - ct[x]);
return mx[x] < mx[y] ? x : y;
}
void get(int x, int fa, int dep, int len)
{
a[t++] = point(dep, len, 0);
a[t++] = point(l - dep, w - len, 1);
for (int i = ft[x]; i != -1; i = nt[i])
{
if (u[i] == fa || vis[u[i]]) continue;
get(u[i], x, dep + 1, len + v[i]);
}
}
LL merge(int l, int r)
{
if (l == r) return 0;
int m = l + r >> 1;
LL ans = merge(l, m) + merge(m + 1, r);
for (int i = l, j = l, k = m + 1, ct = 0; i <= r; i++)
{
if (j <= m && (a[j].y < a[k].y || a[j].y == a[k].y&&a[j].z <= a[k].z || k > r))
{
b[i] = a[j++]; ct += b[i].z ^ 1;
}
else
{
b[i] = a[k++]; ans += b[i].z*ct;
}
}
for (int i = l; i <= r; i++) a[i] = b[i];
return ans;
}
LL find(int x, int dep, int len)
{
LL ans = t = 0;
get(x, -1, dep, len);
sort(a, a + t);
for (int i = 0; i < t; i++)
{
if (a[i].x + a[i].x <= l&&a[i].y + a[i].y <= w) ans += a[i].z ^ 1;
}
return merge(0, t - 1) - ans >> 1;
}
LL work(int x, int sum)
{
int y = dfs(x, -1, sum);
LL ans = find(y, 0, 0); vis[y] = 1;
for (int i = ft[y]; i != -1; i = nt[i])
{
if (vis[u[i]]) continue;
ans -= find(u[i], 1, v[i]);
ans += work(u[i], ct[u[i]] > ct[y] ? sum - ct[y] : ct[u[i]]);
}
return ans;
}
}solve;

int main()
{
while (scanf("%d%d%d", &n, &l, &w) != EOF)
{
solve.clear(n);
for (int i = 1; i < n; i++)
{
scanf("%d%d", &x, &y);
solve.AddEdge(i + 1, x, y);
}
printf("%I64d\n", solve.work(1, n));
}
return 0;
}



举报

相关推荐

0 条评论