一个目录
- 算法效率
- 算法的复杂度
- 时间复杂度
- 大O渐进表示法
- 常见时间复杂度计算举例
- 空间复杂度
- 总结
算法效率
我们现在先不急着讲算法效率,我们先试想一个场景:有一个很菜的大学生,打开了一个叫力扣的刷题网站,随便炫了一道题,花了几十分钟拼死拼活写出了一段代码,点击运行,运行时间1001ms,直接超时,当场去世。然后缝缝补补,改改bug,一天就这么过去了。
还是这个很菜的大学生,大学生觉得自己刷题的策略很有问题,于是在做每一道题目前都会先花几分钟思考一下:这个题型是不是见过?有没有比较好的解法?要不要去考虑一些复杂的情况?虽然这个大学生还是很菜,但是他做题的体验感上去了很多:省去了一些微调代码的时间,代码变得更加容易阅读,正确率也上升了不少,也有了出去闲逛的时间。简单来说,就是他刷题的效率上升了。
既然标题叫算法效率,接下来我们肯定要讲到算法。以一个简洁漂亮的斐波那契数列为例。
long long Fib(int N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
短短几行代码就能实现复杂的功能,但是我们都知道,这个函数在求40左右的斐波那契数就有些力不从心,更不用去谈什么100,200。
40左右,我都能算的出来,要你何用?
为什么会出现这种状况?这个就和算法的复杂度有关了。
算法的复杂度
算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。
在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
时间复杂度
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
举个例子:
// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
Func1 执行的基本操作次数:
F(N)=N^2+2*N+10
当N的值很大的时候,后面的项对结果的影响越来越小,因此,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这
里我们使用大O的渐进表示法。
大O渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
- 用常数1取代运行时间中的所有加法常数。
- 在修改后的运行次数函数中,只保留最高阶项。
- 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为O(N^2)
大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
- 最坏情况:任意输入规模的最大运行次数(上界)
- 平均情况:任意输入规模的期望运行次数
- 最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
- 最好情况:1次找到
- 最坏情况:N次找到
- 平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
常见时间复杂度计算举例
例1:
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
基本操作执行了2N+10次,时间复杂度为 O(N) .
例2:
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}
基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)
例3:
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}
执行了100次,常数不管多少都是1,时间复杂度为 O(1)
例4:
// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );
基本操作执行最好1次,最坏N次,时间复杂度一般看最坏,时间复杂度为 O(N)
例5:
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
时间复杂度为 O(N^2)
例6:
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
while (begin < end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid;
else
return mid;
}
return -1;
}
基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN)
ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。(但不建议这么写)
我们假设最多查找了x次,可得2^x=N,x=logN.
例7:
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;
}
递归了N次,时间复杂度为O(N)。
例8:
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
计算分析发现基本操作递归了2^N次(近似计算),时间复杂度为O( 2^N )。
空间复杂度
空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间 (存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。
例1:
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
使用了常数个额外空间,所以空间复杂度为 O(1)
例2:
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
动态开辟了N个空间,空间复杂度为 O(N).
例3:
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}
递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N).
总结
算法的效率,一目了然。
菜鸡大学生今天能写出漂亮的代码吗?