0
点赞
收藏
分享

微信扫一扫

prove cosx is the derivative of sinx

双井暮色 2022-01-23 阅读 8

我们一直都在使用Derivative Rules,但有没有想过为什么是这样的?

方1

由导数定义有
d d x s i n ( x ) = lim ⁡ h → 0 s i n ( x + h ) − s i n ( x ) h \frac{d}{dx}sin(x) = \lim\limits_{h \rightarrow 0} \frac{sin(x+h)-sin(x)}{h} dxdsin(x)=h0limhsin(x+h)sin(x)
d d x s i n ( x ) = lim ⁡ h → 0 s i n ( x ) c o s ( h ) + c o s ( x ) s i n ( h ) − s i n ( x ) h \frac{d}{dx}sin(x) = \lim\limits_{h \rightarrow 0} \frac{sin(x)cos(h)+cos(x)sin(h)-sin(x)}{h} dxdsin(x)=h0limhsin(x)cos(h)+cos(x)sin(h)sin(x)
d d x s i n ( x ) = c o s ( x ) lim ⁡ h → 0 s i n ( h ) h − s i n ( x ) lim ⁡ h → 0 1 − c o s ( h ) h \frac{d}{dx}sin(x) = cos(x)\lim\limits_{h \rightarrow 0} \frac{sin(h)}{h} - sin(x)\lim\limits_{h \rightarrow 0} \frac{1 - cos(h)}{h} dxdsin(x)=cos(x)h0limhsin(h)sin(x)h0limh1cos(h)
证明 ( s i n x ) ′ = c o s x (sinx)' = cosx (sinx)=cosx就相当于证明 lim ⁡ h → 0 s i n ( h ) h = 1 , lim ⁡ h → 0 1 − c o s ( h ) h = 0 \lim\limits_{h \rightarrow 0} \frac{sin(h)}{h}=1, \lim\limits_{h \rightarrow 0} \frac{1 - cos(h)}{h}=0 h0limhsin(h)=1,h0limh1cos(h)=0

1 − c o s ( x ) x = s i n x x s i n x 1 + c o s x \frac{1-cos(x)}{x} = \frac{sinx}{x} \frac{sinx}{1+cosx} x1cos(x)=xsinx1+cosxsinx
lim ⁡ h → 0 s i n x x s i n x 1 + c o s x = 0 \lim\limits_{h \rightarrow 0} \frac{sinx}{x} \frac{sinx}{1+cosx}=0 h0limxsinx1+cosxsinx=0

参考
https://www.analyzemath.com/calculus/derivative/proof-derivative-of-e%5Ex.html

方2

由欧拉公式有
s i n x = 1 2 i ( e i x − e − i x ) sinx = \frac{1}{2i}(e^{ix}-e^{-ix}) sinx=2i1(eixeix)
c o s x = 1 2 ( e i x + e − i x ) cosx = \frac{1}{2}(e^{ix}+e^{-ix}) cosx=21(eix+eix)
证明 ( s i n x ) ′ = c o s x (sinx)' = cosx (sinx)=cosx就相当于证明 ( e c x ) ′ = c e c x (e^{cx})' = ce^{cx} (ecx)=cecx

( e c x ) ′ = lim ⁡ h → 0 e c ( x + h ) − e c x h (e^{cx})' = \lim\limits_{h \rightarrow 0} \frac{e^{c(x+h)}-e^{cx}}{h} (ecx)=h0limhec(x+h)ecx
( e c x ) ′ = c e c x lim ⁡ h → 0 e c h − 1 c h (e^{cx})' = c e^{cx} \lim\limits_{h \rightarrow 0} \frac{e^{ch}-1}{ch} (ecx)=cecxh0limchech1
lim ⁡ h → 0 e c h − 1 c h = lim ⁡ y → 0 y l n ( y + 1 ) , y = e c h − 1 \lim\limits_{h \rightarrow 0} \frac{e^{ch}-1}{ch} = \lim\limits_{y \rightarrow 0} \frac{y}{ln(y+1)}, y=e^{ch}-1 h0limchech1=y0limln(y+1)y,y=ech1
lim ⁡ y → 0 y l n ( y + 1 ) = lim ⁡ y → 0 l n ( y + 1 ) − 1 y \lim\limits_{y \rightarrow 0} \frac{y}{ln(y+1)} = \lim\limits_{y \rightarrow 0} ln(y+1)^{-\frac{1}{y}} y0limln(y+1)y=y0limln(y+1)y1
欧拉常数 e = lim ⁡ m → 0 ( 1 + m ) 1 m , l n ( e ) = 1 e = \lim\limits_{m \rightarrow 0}(1+m)^{\frac{1}{m}}, ln(e)=1 e=m0lim(1+m)m1,ln(e)=1
lim ⁡ y → 0 l n ( y + 1 ) − 1 y = 1 l n ( lim ⁡ y → 0 ( y + 1 ) 1 y ) = 1 \lim\limits_{y \rightarrow 0} ln(y+1)^{-\frac{1}{y}} = \frac{1}{ln(\lim\limits_{y \rightarrow 0} (y+1)^{\frac{1}{y}})} = 1 y0limln(y+1)y1=ln(y0lim(y+1)y1)1=1
因此, ( e c x ) ′ = c e c x (e^{cx})' = c e^{cx} (ecx)=cecx

参考
https://www.analyzemath.com/calculus/derivative/proof-derivative-of-e%5Ex.html

还可以通过级数推导

Note:
the logarithm is the inverse function to exponentiation
if l o g a b = c log_a b = c logab=c, then a c = b a^c = b ac=b

举报

相关推荐

0 条评论