0
点赞
收藏
分享

微信扫一扫

python 学习

优化排序

在MongoDB里面,如果能够利用索引来排序的话,直接按照索引顺序加载数据就可以了。如果不能利用索引来排序的话,就必须在加载了数据之后,再次进行排序,也就是进行内存排序。

可想而知,如果内存排序,再叠加分页查询的话,性能会更差。比如你要查询skip(10000).limit(100),那么在最坏情况下,MongoDB要把所有的文件加载到内存里排序,然后找到从10000开始的100条数据

在这里插入图片描述
优化的思路也类似MySQL。第一种是把查询优化成利用索引来排序,可以考虑修改查询,也可以考虑修改索引。比如你可以新建索引。

另一种优化思路是借鉴在分库分表里提到的禁止跨页查询,也就是每次查询带上上一次查询的极值作为查询条件。

注意,这里的极值是最大值还是最小值,跟你的排序有关。

另外你可以进一步把话题引导到MySQL和分库分表上。

既然MongoDB会有这种分页的问题,那么分片情况下处理分页的mongos岂不是容易成为瓶颈吗?
所以就可以考虑增加mongos的数量

增加mongos数量

如果是分片集合的话,查询都要靠mongos来执行路由,并且合并结果集

换一句话来说,mongos就是查询的性能瓶颈,它可能是CPU瓶颈、内存瓶颈或网络带宽瓶颈。比如,你有分片查询,那么mongos就必须要求各个分片查询到结果之后,自己再排序,选出全局分页里对应的数据

因此,在实践中要密切关注查询性能,并且发现查询很慢的时候,就要去看看是不是mongos引起的。

另一种面试的思路是隔离,也就是要考虑到mongos本身容易称为性能瓶颈,并且你也不能无限增加mongos实例,所以如果公司资源足够,应该让核心业务使用独立的mongos实例,或者说独立的MongoDB集群

举报

相关推荐

0 条评论