746. 使用最小花费爬楼梯
数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost[i](索引从0开始)。
每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。
您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。
示例 1:
输入: cost = [10, 15, 20]
输出: 15
解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
示例 2:
输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出: 6
解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/min-cost-climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
注意:
-
cost
的长度将会在 [2, 1000]
。 - 每一个
cost[i]
将会是一个Integer类型,范围为 [0, 999]
思路
创建一个数组存放上到第i层后的消耗,满足f_res[i]=min(f_res[i-1],f_res[i-2])+cost[i],如果是最后的目的地,那么不加cost[]。所以实质是求f_res[len-1]和f_res[len-2]的最小值。
代码
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
int res;
int len=cost.size();
vector<int> f_res(len+1,0);
f_res[0]=cost[0];
f_res[1]=cost[1];
for(int i=2;i<=len;i++)
{
if(i==len)
f_res[i]=min(f_res[i-1],f_res[i-2]);
else
f_res[i]=min(f_res[i-1],f_res[i-2])+cost[i];
}
return f_res[len];
}
};