0
点赞
收藏
分享

微信扫一扫

POJ3070 Fibonacci(矩阵快速幂)

萨科潘 2023-04-21 阅读 57


B - Fibonacci


Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u


Submit  Status



Description



In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

POJ3070    Fibonacci(矩阵快速幂)_git

.

Given an integer n, your goal is to compute the last 4 digits of Fn.


Input


The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.


Output


For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).


Sample Input


09 999999999 1000000000 -1


Sample Output


034 626 6875


Hint


As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

POJ3070    Fibonacci(矩阵快速幂)_#include_02

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

POJ3070    Fibonacci(矩阵快速幂)_#include_03

.







  • Source Code

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
using namespace std;
const int inf=0x3f3f3f3f;
const int mod=10000;
int n = 2;
struct node
{
    int mp[20][20];
} init,res;
struct node Mult(struct node x, struct node y)// 矩阵相乘
{
    struct node tmp;
    int i,j,k;
    for(i=0; i<n; i++)
    {
        for(j=0; j<n; j++)
        {
            tmp.mp[i][j]=0;
            for(k=0; k<n; k++)
            {
                tmp.mp[i][j]=(tmp.mp[i][j]+x.mp[i][k]*y.mp[k][j])%mod;
            }
        }
    }
    return tmp;
};
struct node expo(struct node x, int k)//矩阵快速幂
{
    struct node tmp;
    int i,j;
    for(i=0; i<n; i++)
    {
        for(j=0; j<n; j++)
        {
            if(i==j)
            {
                tmp.mp[i][j]=1;
            }
            else
            {
                tmp.mp[i][j]=0;
            }
        }
    }
    while(k)
    {
        if(k%2 == 1)
        {
            tmp=Mult(tmp,x);
        }
        x=Mult(x,x);
        k>>=1;
    }
    return tmp;
};
int main()
{
    int T,i,j,k;
    int ans;
    while(~scanf("%d",&k))
    {
        if(k == -1)
        {
            break;
        }
        if(k == 0)
        {
            printf("0\n");
            continue;
        }
        init.mp[0][0] = 1;
        init.mp[0][1] = 1;
        init.mp[1][0] = 1;
        init.mp[1][1] = 0;
        res=expo(init,k);
        ans = res.mp[0][1];
        printf("%d\n",ans);
    }

return 0;
}



举报

相关推荐

0 条评论