0
点赞
收藏
分享

微信扫一扫

Android Studio SDK manager加载packages不全

目录

分布式内存计算Spark环境部署

1.  简介

2.  安装

2.1【node1执行】下载并解压

2.2【node1执行】修改配置文件名称

2.3【node1执行】修改配置文件,spark-env.sh

2.4 【node1执行】修改配置文件,slaves

2.5【node1执行】分发

2.6【node2、node3执行】设置软链接

2.7【node1执行】启动Spark集群

2.8  打开Spark监控页面,浏览器打开:

2.9【node1执行】提交测试任务

分布式内存计算Flink环境部署

1.  简介

2.  安装

2.1【node1操作】下载安装包

2.3 【node1操作】,修改配置文件,conf/slaves

2.4【node1操作】分发Flink安装包到其它机器

2.5 【node2、node3操作】

2.7   验证Flink启动

2.8   提交测试任务


分布式内存计算Spark环境部署

1.  简介

Spark是一款分布式内存计算引擎,可以支撑海量数据的分布式计算。

Spark在大数据体系是明星产品,作为最新一代的综合计算引擎,支持离线计算和实时计算。

在大数据领域广泛应用,是目前世界上使用最多的大数据分布式计算引擎。

我们将基于前面构建的Hadoop集群,部署Spark Standalone集群。

2.  安装

2.1【node1执行】下载并解压

wget https: / archive.apache.org/dist/spark/spark-2.4.5/spark-2.4.5-bin-hadoop2.7.tgz

# 解压
tar -zxvf spark-2.4.5-bin-hadoop2.7.tgz -C /export/server/

# 软链接
ln -s /export/server/spark-2.4.5-bin-hadoop2.7 /export/server/spark

2.2【node1执行】修改配置文件名称

# 改名
cd /export/server/spark/conf
mv spark-env.sh.template spark-env.sh
mv slaves.template slaves

2.3【node1执行】修改配置文件,spark-env.sh

#设置JAVA安装目录
JAVA_HOME=/export/server/jdk

#HADOOP软件配置文件目录,读取HDFS上文件和运行YARN集群
HADOOP_CONF_DIR=/export/server/hadoop/etc/hadoop
YARN_CONF_DIR=/export/server/hadoop/etc/hadoop

#指定spark老大Master的IP和提交任务的通信端口
export SPARK_MASTER_HOST=node1
export SPARK_MASTER_PORT=7077

SPARK_MASTER_WEBUI_PORT=8080
SPARK_WORKER_CORES=1
SPARK_WORKER_MEMORY=1g

2.4 【node1执行】修改配置文件,slaves

node1
node2
node3

2.5【node1执行】分发

scp -r spark-2.4.5-bin-hadoop2.7 node2:$PWD
scp -r spark-2.4.5-bin-hadoop2.7 node3:$PWD

2.6【node2、node3执行】设置软链接

 ln -s /export/server/spark-2.4.5-bin-hadoop2.7 /export/server/spark

2.7【node1执行】启动Spark集群

/export/server/spark/sbin/start-all.sh

# 如需停止,可以
/export/server/spark/sbin/stop-all.sh

2.8  打开Spark监控页面,浏览器打开:

2.9【node1执行】提交测试任务

/export/server/spark/bin/spark-submit --master
spark: / node1:7077 - class
org.apache.spark.examples.SparkPi
/export/server/spark/examples/jars/spark-examples_2.11-2.4.5.jar

分布式内存计算Flink环境部署

1.  简介

Flink同Spark一样,是一款分布式内存计算引擎,可以支撑海量数据的分布式计算。

Flink在大数据体系同样是明星产品,作为最新一代的综合计算引擎,支持离线计算和实时计算。

在大数据领域广泛应用,是目前世界上除去Spark以外,应用最为广泛的分布式计算引擎。

我们将基于前面构建的Hadoop集群,部署Flink Standalone集群

Spark更加偏向于离线计算而Flink更加偏向于实时计算。

2.  安装

2.1【node1操作】下载安装包

wget https: / archive.apache.org/dist/flink/flink-1.10.0/flink-1.10.0-bin-scala_2.11.tgz

# 解压
tar -zxvf flink-1.10.0-bin-scala_2.11.tgz -C
/export/server/

# 软链接
ln -s /export/server/flink-1.10.0
/export/server/flink
# jobManager 的IP地址
jobmanager.rpc.address: node1
# JobManager 的端口号
jobmanager.rpc.port: 6123
# JobManager JVM heap 内存大小
jobmanager.heap.size: 1024m
# TaskManager JVM heap 内存大小
taskmanager.heap.size: 1024m
# 每个 TaskManager 提供的任务 slots 数量大小
taskmanager.numberOfTaskSlots: 2

#是否进行预分配内存,默认不进行预分配,这样在我们不使用flink集群时候不会占用集群资源
taskmanager.memory.preallocate: false
# 程序默认并行计算的个数
parallelism.default: 1
#JobManager的Web界面的端口(默认:8081)
jobmanager.web.port: 8081

2.3 【node1操作】,修改配置文件,conf/slaves

node1
node2
node3

2.4【node1操作】分发Flink安装包到其它机器

cd /export/server
scp -r flink-1.10.0 node2:`pwd`/
scp -r flink-1.10.0 node3:`pwd`/

2.5 【node2、node3操作】

# 配置软链接
ln -s /export/server/flink-1.10.0
/export/server/flink
/export/server/flink/bin/start-cluster.sh

2.7   验证Flink启动

# 浏览器打开
http://node1:8081

2.8   提交测试任务

【node1执行】

/export/server/flink/bin/flink run
/export/server/flink-1.10.0/examples/batch/WordCount.jar

更多环境部署:

举报

相关推荐

0 条评论