0. 往期内容
[一]深度学习Pytorch-张量定义与张量创建
[二]深度学习Pytorch-张量的操作:拼接、切分、索引和变换
[三]深度学习Pytorch-张量数学运算
[四]深度学习Pytorch-线性回归
[五]深度学习Pytorch-计算图与动态图机制
[六]深度学习Pytorch-autograd与逻辑回归
[七]深度学习Pytorch-DataLoader与Dataset(含人民币二分类实战)
[八]深度学习Pytorch-图像预处理transforms
[九]深度学习Pytorch-transforms图像增强(剪裁、翻转、旋转)
[十]深度学习Pytorch-transforms图像操作及自定义方法
[十一]深度学习Pytorch-模型创建与nn.Module
[十二]深度学习Pytorch-模型容器与AlexNet构建
[十三]深度学习Pytorch-卷积层(1D/2D/3D卷积、卷积nn.Conv2d、转置卷积nn.ConvTranspose)
[十四]深度学习Pytorch-池化层、线性层、激活函数层
[十五]深度学习Pytorch-权值初始化
[十六]深度学习Pytorch-18种损失函数loss function
[十七]深度学习Pytorch-优化器Optimizer
[十八]深度学习Pytorch-学习率Learning Rate调整策略
[十九]深度学习Pytorch-可视化工具TensorBoard
[二十]深度学习Pytorch-Hook函数与CAM算法
[二十一]深度学习Pytorch-正则化Regularization之weight decay
[二十二]深度学习Pytorch-正则化Regularization之dropout
[二十三]深度学习Pytorch-批量归一化Batch Normalization
[二十四]深度学习Pytorch-BN、LN(Layer Normalization)、IN(Instance Normalization)、GN(Group Normalization)
[二十五]深度学习Pytorch-模型保存与加载
[二十六]深度学习Pytorch-模型微调Finetune
[二十七]深度学习Pytorch-GPU的使用
深度学习Pytorch-GPU的使用
1. CPU与GPU
代码示例:
cuda_methods.py
# -*- coding: utf-8 -*-
"""
# @file name : cuda_methods.py
# @author : TingsongYu https://github.com/TingsongYu
# @date : 2019-11-11
# @brief : 数据迁移至cuda的方法
"""
import torch
import torch.nn as nn
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# ========================== tensor to cuda
# flag = 0
flag = 1
if flag:
x_cpu = torch.ones((3, 3))
print("x_cpu:\ndevice: {} is_cuda: {} id: {}".format(x_cpu.device, x_cpu.is_cuda, id(x_cpu)))
x_gpu = x_cpu.to(device)
print("x_gpu:\ndevice: {} is_cuda: {} id: {}".format(x_gpu.device, x_gpu.is_cuda, id(x_gpu)))
# pytorch已经弃用的方法
# x_gpu = x_cpu.cuda()
# ========================== module to cuda
# flag = 0
flag = 1
if flag:
net = nn.Sequential(nn.Linear(3, 3))
print("\nid:{} is_cuda: {}".format(id(net), next(net.parameters()).is_cuda))
net.to(device)
print("\nid:{} is_cuda: {}".format(id(net), next(net.parameters()).is_cuda))
# ========================== forward in cuda
# flag = 0
flag = 1
if flag:
output = net(x_gpu) #输入在gpu,模型在gpu,输出在gpu上
print("output is_cuda: {}".format(output.is_cuda))
# output = net(x_cpu) #输入在cpu,模型在gpu,报错
# ========================== 查看当前gpu 序号,尝试修改可见gpu,以及主gpu
flag = 0
# flag = 1
if flag:
current_device = torch.cuda.current_device()
print("current_device: ", current_device)
torch.cuda.set_device(0)
current_device = torch.cuda.current_device()
print("current_device: ", current_device)
#
cap = torch.cuda.get_device_capability(device=None)
print(cap)
#
name = torch.cuda.get_device_name()
print(name)
is_available = torch.cuda.is_available()
print(is_available)
# ===================== seed
seed = 2
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
current_seed = torch.cuda.initial_seed()
print(current_seed)
s = torch.cuda.seed()
s_all = torch.cuda.seed_all()
2. torch.cuda常用方法
2代表着逻辑gpu0是物理gpu2,3代表着逻辑gpu1是物理gpu3。
0代表着逻辑gpu0是物理gpu0,3代表着逻辑gpu1是物理gpu3,2代表着逻辑gpu2是物理gpu2。
默认gpu0是主gpu。
代码示例:
# -*- coding: utf-8 -*-
import os
import numpy as np
import torch
# ========================== 选择 gpu
# flag = 0
flag = 1
if flag:
gpu_id = 0
gpu_str = "cuda:{}".format(gpu_id)
device = torch.device(gpu_str if torch.cuda.is_available() else "cpu")
x_cpu = torch.ones((3, 3))
x_gpu = x_cpu.to(device)
print("x_gpu:\ndevice: {} is_cuda: {} id: {}".format(x_gpu.device, x_gpu.is_cuda, id(x_gpu)))
# ========================== 查看 gpu数量/名称
# flag = 0
flag = 1
if flag:
device_count = torch.cuda.device_count()
print("\ndevice_count: {}".format(device_count))
device_name = torch.cuda.get_device_name(0)
print("\ndevice_name: {}".format(device_name))
3. 多GPU并行计算
分发3分钟,做作业一本60分钟,做完以后收作业3分钟。
结果默认输出至主gpu上。
(1)1个gpu时:
代码示例:
# -*- coding: utf-8 -*-
import os
import numpy as np
import torch
import torch.nn as nn
# ============================ 手动选择gpu
# flag = 0
flag = 1
if flag:
gpu_list = [0]
gpu_list_str = ','.join(map(str, gpu_list))
os.environ.setdefault("CUDA_VISIBLE_DEVICES", gpu_list_str)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ============================ 依内存情况自动选择主gpu
# flag = 0
flag = 1
if flag:
def get_gpu_memory():
import platform
if 'Windows' != platform.system():
import os
os.system('nvidia-smi -q -d Memory | grep -A4 GPU | grep Free > tmp.txt')
memory_gpu = [int(x.split()[2]) for x in open('tmp.txt', 'r').readlines()]
os.system('rm tmp.txt')
else:
memory_gpu = False
print("显存计算功能暂不支持windows操作系统")
return memory_gpu
gpu_memory = get_gpu_memory()
if not gpu_memory:
print("\ngpu free memory: {}".format(gpu_memory))
gpu_list = np.argsort(gpu_memory)[::-1]
gpu_list_str = ','.join(map(str, gpu_list))
os.environ.setdefault("CUDA_VISIBLE_DEVICES", gpu_list_str)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class FooNet(nn.Module):
def __init__(self, neural_num, layers=3):
super(FooNet, self).__init__()
self.linears = nn.ModuleList([nn.Linear(neural_num, neural_num, bias=False) for i in range(layers)])
def forward(self, x):
print("\nbatch size in forward: {}".format(x.size()[0]))
for (i, linear) in enumerate(self.linears):
x = linear(x)
x = torch.relu(x)
return x
if __name__ == "__main__":
batch_size = 16
# data
inputs = torch.randn(batch_size, 3)
labels = torch.randn(batch_size, 3)
inputs, labels = inputs.to(device), labels.to(device)
# model
net = FooNet(neural_num=3, layers=3)
net = nn.DataParallel(net)
net.to(device)
# training
for epoch in range(1):
outputs = net(inputs)
print("model outputs.size: {}".format(outputs.size()))
print("CUDA_VISIBLE_DEVICES :{}".format(os.environ["CUDA_VISIBLE_DEVICES"]))
print("device_count :{}".format(torch.cuda.device_count()))
batchsize in forward = 16/1=16。
(2)两个gpu时:
batchsize in forward = 16/2=8。
(3)3个gpu时:
batchsize in forward = 16/4=4。
argsort排序。