0
点赞
收藏
分享

微信扫一扫

[JLOI2012]树 倍增优化

我是小小懒 2022-05-27 阅读 25

题目描述

在这个问题中,给定一个值S和一棵树。在树的每个节点有一个正整数,问有多少条路径的节点总和达到S。路径中节点的深度必须是升序的。假设节点1是根节点,根的深度是0,它的儿子节点的深度为1。路径不必一定从根节点开始。

输入输出格式

输入格式:

第一行是两个整数N和S,其中N是树的节点数。 第二行是N个正整数,第i个整数表示节点i的正整数。 接下来的N-1行每行是2个整数x和y,表示y是x的儿子。

输出格式:

输出路径节点总和为S的路径数量。

输入输出样例

输入样例#1:

复制

3 3
1 2 3
1 2
1 3

输出样例#1: 复制

2

说明

对于100%数据,N<=100000,所有权值以及S都不超过1000。

倍增;

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//#include
//#pragma GCC optimize(2)
using namespace std;
#define maxn 1000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
}

ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }


/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int n, m;
int val[maxn][20];
int fa[maxn][20];


int main() {
//ios::sync_with_stdio(0);
rdint(n); rdint(m);
for (int i = 1; i <= n; i++) {
rdint(val[i][0]);
}
for (int i = 1; i < n; i++) {
int x, y; rdint(x); rdint(y);
fa[y][0] = x;
}
for (int i = 1; i <= 18; i++) {
for (int j = 1; j <= n; j++) {
fa[j][i] = fa[fa[j][i - 1]][i - 1];
val[j][i] = val[j][i - 1] + val[fa[j][i - 1]][i - 1];
}
}
int ans = 0;
for (int i = 1; i <= n; i++) {
int x = 0;
int y = i;
for (int j = 18; j >= 0; j--) {
if (x + val[y][j] <= m) {
x += val[y][j];
y = fa[y][j];
}
if (x == m) {
ans++; break;
}
}
}
cout << ans << endl;
return 0;
}

 

EPFL - Fighting

举报

相关推荐

0 条评论