目录
🌈前言
🚚动态规划介绍
🔗动态规划与递归的关系
//递归求斐波那契数列的第N项
public static long Fac(int n)
{
if(n == 1 || n == 2)
{
return 1;
}
return Fac(n-1) + Fac(n-2);
}
public static long Fac(int n)
{
if(n <= 2)
{
return 1;
}
long dp[100] = {0};
//初始化第一个元素和第二个元素
dp[1] = 1;
dp[2] = 1;
int i = 0;
for(i = 3; i <= n; i++)
{
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
public static long Fac(int n)
{
if(n <= 2)
{
return 1;
}
//初始化
int preFirst = 1;//preFirst = dp[i-1]
int preSecond = 1;//preSecond = dp[i-2]
int ans = 0;//ans = dp[i]
int i = 0;
for(i =3; i <= n; i++)
{
ans = preFirst + preSecond;
preSecond = preFirst;
preFirst = ans;
}
return ans;
}
public static int Labyrinth(int n, int m)
{
if(m == 1 && n == 1)
{
return 1;
}
//处理边界情况
if(m == 1 || n == 1)
{
return 1;
}
return Labyrinth(m-1, n) + Labyrinth(m, n-1);
}
public static int Labyrinth(int m, int n){
int[][] dp = new dp[n][m];
//初始化
dp[0][0] = 1;
for(int i=0; i<n; i++){
for(int j=0; j<m; j++){
if(i == 0 || j == 0){
dp[i][j] = 1;
}
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[n-1][m-1];
}
public static int Labyrinth(int m, int n){
int[][] dp = new int[2][m];
//初始化
dp[0][0] = 1;
for(int i=0; i<n; i++){
for(int j=0; j<m; j++){
if(i == 0 || j == 0){
dp[i%2][j] = 1;
continue;
}
if(i%2 == 0)//偶数行用1行的元素
dp[i%2][j] = dp[i%2][j-1] + dp[i%2+1][j];
else//奇数行用第0行的元素
dp[i%2][j] = dp[i%2][j-1] + dp[i%2-1][j];
}
}
return dp[(n+1)%2][m-1];
}
public class Solution {
/**
* @param obstacleGrid: A list of lists of integers
* @return: An integer
*/
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
// write your code here
int n = obstacleGrid.length;//获取行
int m = obstacleGrid[0].length;//获取列
if (m == 0 || n == 0) {
return 0;
}
int[][] dp = new int[n][m];
//处理特殊情况
if (obstacleGrid[0][0] == 1 || obstacleGrid[n - 1][m - 1] == 1) {
return 0;
}
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (obstacleGrid[i][j] == 1) {
dp[i][j] = 0;
} else {
if (i == 0 && j == 0) {
dp[i][j] = 1;
} else {
if (i == 0) {
dp[i][j] = dp[i][j - 1];
} else {
if (j == 0) {
dp[i][j] = dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
}
}
}
return dp[n - 1][m - 1];
}
}
📋动态规划的基本步骤
public class Solution {
/**
* @param grid: a list of lists of integers
* @return: An integer, minimizes the sum of all numbers along its path
*/
public int minPathSum(int[][] grid) {
int n = grid.length;
int m = grid[0].length;
int[][] dp = new int[2][m];//开辟滚动数组
int old = 0;
int now = 1;
int t1, t2;
for(int i=0; i<n; i++){
//old and now swap
now = old;
old = 1-now;
for(int j=0; j<m; j++){
if(i == 0 && j == 0){
dp[now][j] = grid[i][j];
continue;
}
dp[now][j] = grid[i][j];
if(i > 0){
t1 = dp[old][j];
}else{
t1 = Integer.MAX_VALUE;//i=0时,该行的上面元素为无穷大
}
if(j>0){
t2 = dp[now][j-1];
}else{
t2 = Integer.MAX_VALUE;//j=0时,该行的左边元素为无穷大
}
//选择较小的值到dp[now][j]
if(t1 > t2){
dp[now][j] += t2;
}else{
dp[now][j] += t1;
}
}
}
return dp[now][m-1];
}
}