目录
现在我们要做DFT的逆变换。在上一节中,我们创建了一个HPF,这次我们将看到如何删除图像中的高频内容,即我们将LPF应用到图像中。
它实际上模糊了图像。为此,我们首先创建一个高值(1)在低频部分,即我们过滤低频内容,0在高频区。
rows, cols = img.shape
crow,ccol = rows/2 , cols/2
# 首先创建一个掩码,中心正方形为1,其余全为零
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
# 应用掩码和逆DFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv.idft(f_ishift)
img_back = cv.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
看看结果:
DFT的性能优化
对于某些数组尺寸,DFT的计算性能较好。当数组大小为2的幂时,速度最快。对于大小为2、3和5的乘积的数组,也可以非常有效地进行处理。因此,如果您担心代码的性能,可以在找到DFT之前将数组的大小修改为任何最佳大小(通过填充零)。对于OpenCV,您必须手动填充零。但是对于Numpy,您指定FFT计算的新大小,它将自动为您填充零。
那么如何找到最优的大小呢?OpenCV为此提供了一个函数,cv.getOptimalDFTSize()。它同时适用于**cv.dft**()和**np.fft.fft2**()。让我们使用IPython魔术命令timeit来检查它们的性能。
In [16]: img = cv.imread('messi5.jpg',0)
In [17]: rows,cols = img.shape
In [18]: print("{} {}".format(rows,cols))
342 548
In [19]: nrows = cv.getOptimalDFTSize(rows)
In [20]: ncols = cv.getOptimalDFTSize(cols)
In [21]: print("{} {}".format(nrows,ncols))
360 576
参见,将大小(342,548)
修改为(360,576)
。现在让我们用零填充(对于OpenCV),并找到其DFT计算性能。您可以通过创建一个新的零数组并将数据复制到其中来完成此操作,或者使用**cv.copyMakeBorder**()。
nimg = np.zeros((nrows,ncols))
nimg[:rows,:cols] = img
或者:
right = ncols - cols
bottom = nrows - rows
bordertype = cv.BORDER_CONSTANT #只是为了避免PDF文件中的行中断
nimg = cv.copyMakeBorder(img,0,bottom,0,right,bordertype, value = 0)
现在,我们计算Numpy函数的DFT性能比较:
In [22]: %timeit fft1 = np.fft.fft2(img)
10 loops, best of 3: 40.9 ms per loop
In [23]: %timeit fft2 = np.fft.fft2(img,[nrows,ncols])
100 loops, best of 3: 10.4 ms per loop
它显示了4倍的加速。现在,我们将尝试使用OpenCV函数。
In [24]: %timeit dft1= cv.dft(np.float32(img),flags=cv.DFT_COMPLEX_OUTPUT)
100 loops, best of 3: 13.5 ms per loop
In [27]: %timeit dft2= cv.dft(np.float32(nimg),flags=cv.DFT_COMPLEX_OUTPUT)
100 loops, best of 3: 3.11 ms per loop
它还显示了4倍的加速。您还可以看到OpenCV函数比Numpy函数快3倍左右。也可以对逆FFT进行测试,这留给您练习。
为什么拉普拉斯算子是高通滤波器?
在一个论坛上也有人提出了类似的问题。问题是,为什么拉普拉斯变换是高通滤波器?为什么Sobel是HPF?等。第一个答案是关于傅里叶变换的。对于更大的FFT只需要拉普拉斯变换。分析下面的代码:
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
# 没有缩放参数的简单均值滤波器
mean_filter = np.ones((3,3))
# 创建高斯滤波器
x = cv.getGaussianKernel(5,10)
gaussian = x*x.T
# 不同的边缘检测滤波器
# x方向上的scharr
scharr = np.array([[-3, 0, 3],
[-10,0,10],
[-3, 0, 3]])
# x方向上的sobel
sobel_x= np.array([[-1, 0, 1],
[-2, 0, 2],
[-1, 0, 1]])
# y方向上的sobel
sobel_y= np.array([[-1,-2,-1],
[0, 0, 0],
[1, 2, 1]])
# 拉普拉斯变换
laplacian=np.array([[0, 1, 0],
[1,-4, 1],
[0, 1, 0]])
filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
filter_name = ['mean_filter', 'gaussian','laplacian', 'sobel_x', \
'sobel_y', 'scharr_x']
fft_filters = [np.fft.fft2(x) for x in filters]
fft_shift = [np.fft.fftshift(y) for y in fft_filters]
mag_spectrum = [np.log(np.abs(z)+1) for z in fft_shift]
for i in xrange(6):
plt.subplot(2,3,i+1),plt.imshow(mag_spectrum[i],cmap = 'gray')
plt.title(filter_name[i]), plt.xticks([]), plt.yticks([])
plt.show()
看看结果:
从图像中,您可以看到每种内核阻止的频率区域以及它允许经过的区域。从这些信息中,我们可以说出为什么每个内核都是HPF或LPF