0
点赞
收藏
分享

微信扫一扫

数据结构基础:P8.1-图(三)--->最小生成树问题

本系列文章为浙江大学陈越、何钦铭数据结构学习笔记,前面的系列文章链接如下
数据结构基础:P1-基本概念
数据结构基础:P2.1-线性结构—>线性表
数据结构基础:P2.2-线性结构—>堆栈
数据结构基础:P2.3-线性结构—>队列
数据结构基础:P2.4-线性结构—>应用实例:多项式加法运算
数据结构基础:P2.5-线性结构—>应用实例:多项式乘法与加法运算-C实现
数据结构基础:P3.1-树(一)—>树与树的表示
数据结构基础:P3.2-树(一)—>二叉树及存储结构
数据结构基础:P3.3-树(一)—>二叉树的遍历
数据结构基础:P3.4-树(一)—>小白专场:树的同构-C语言实现
数据结构基础:P4.1-树(二)—>二叉搜索树
数据结构基础:P4.2-树(二)—>二叉平衡树
数据结构基础:P4.3-树(二)—>小白专场:是否同一棵二叉搜索树-C实现
数据结构基础:P4.4-树(二)—>线性结构之习题选讲:逆转链表
数据结构基础:P5.1-树(三)—>堆
数据结构基础:P5.2-树(三)—>哈夫曼树与哈夫曼编码
数据结构基础:P5.3-树(三)—>集合及运算
数据结构基础:P5.4-树(三)—>入门专场:堆中的路径
数据结构基础:P5.5-树(三)—>入门专场:File Transfer
数据结构基础:P6.1-图(一)—>什么是图
数据结构基础:P6.2-图(一)—>图的遍历
数据结构基础:P6.3-图(一)—>应用实例:拯救007
数据结构基础:P6.4-图(一)—>应用实例:六度空间
数据结构基础:P6.5-图(一)—>小白专场:如何建立图-C语言实现
数据结构基础:P7.1-图(二)—>树之习题选讲:Tree Traversals Again
数据结构基础:P7.2-图(二)—>树之习题选讲:Complete Binary Search Tree
数据结构基础:P7.3-图(二)—>树之习题选讲:Huffman Codes
数据结构基础:P7.4-图(二)—>最短路径问题
数据结构基础:P7.5-图(二)—>哈利·波特的考试

文章目录


前言

前面我们举过一个村村通的例子,也就是说我有很多分散的村落,每两个村落之间都是可以修路的。但是,作为一个镇长来说,我希望花最少的钱就能够把所有的这些小村落全部都连通起来,也就是说我想做成一个连通图。这个连通图里头应该有最少的边,每一条边的选择就是每一条路的选择,我要选的是最好建的或者说建起来花销最少的那些边。整个问题就可以归纳为一个最小生成树的问题

最小生成树(Minimum Spanning Tree)


贪心算法
解决最小生成树问题我们有不同的算法,不管是哪一种都可以归结为是贪心算法。贪心算法有两种非常有名:prim算法Kruscal算法


一、Prime算法

prim算法的基本思路是:从一个根结点开始,让一棵小树慢慢的长大

我们来看一个具体的例子:


pretty算法刚才的收集过程有没有觉得有点眼熟呢?是不是跟 Dijkstra 算法有点像呢?我们看他们像到什么程度。
在这里插入图片描述


二、Kruscal算法

如果图是比较稀疏的,也就是说有很多的结点但是边的条数比较少,差不多跟顶点数是同一数量级的。在这种情况下,我们有一个更好的算法,叫做Kruskal算法。Kruskal 算法的基本思想是:把森林合并成一棵树

把森林合并成一棵树:

例子:


对应伪代码如下:

void Kruskal ( Graph G )
{
	MST = { } ; //放收进来的边,最开始是空的
	while ( MST 中不到 |V|1 条边 && E 中还有边 ) {
		从 E 中取一条权重最小的边 E(v,w) ; //使用最小堆,复杂度为logEE(v,w)从 E 中删除;
		if ( E(V,W)不在 MST 中构成回路)   //使用并查集,复杂度为EE(V,W) 加入 MST;
		else
			彻底无视 E(V,W);
	}
	if ( MST 中不到 |V|1 条边 )
	Error ( “生成树不存在” );
}

算法的整体复杂度为: T = O ( ∣ E ∣ l o g ∣ E ∣ ) \rm{T=O( |E| log |E|)} T=O(ElogE)


邻接矩阵存储-Prime最小生成树算法

/* 邻接矩阵存储 - Prim最小生成树算法 */

Vertex FindMinDist( MGraph Graph, WeightType dist[] )
{ /* 返回未被收录顶点中dist最小者 */
    Vertex MinV, V;
    WeightType MinDist = INFINITY;

    for (V=0; V<Graph->Nv; V++) {
        if ( dist[V]!=0 && dist[V]<MinDist) {
            /* 若V未被收录,且dist[V]更小 */
            MinDist = dist[V]; /* 更新最小距离 */
            MinV = V; /* 更新对应顶点 */
        }
    }
    if (MinDist < INFINITY) /* 若找到最小dist */
        return MinV; /* 返回对应的顶点下标 */
    else return ERROR;  /* 若这样的顶点不存在,返回-1作为标记 */
}

int Prim( MGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
    WeightType dist[MaxVertexNum], TotalWeight;
    Vertex parent[MaxVertexNum], V, W;
    int VCount;
    Edge E;
    
    /* 初始化。默认初始点下标是0 */
       for (V=0; V<Graph->Nv; V++) {
        /* 这里假设若V到W没有直接的边,则Graph->G[V][W]定义为INFINITY */
           dist[V] = Graph->G[0][V];
           parent[V] = 0; /* 暂且定义所有顶点的父结点都是初始点0 */ 
    }
    TotalWeight = 0; /* 初始化权重和     */
    VCount = 0;      /* 初始化收录的顶点数 */
    /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
    MST = CreateGraph(Graph->Nv);
    E = (Edge)malloc( sizeof(struct ENode) ); /* 建立空的边结点 */
           
    /* 将初始点0收录进MST */
    dist[0] = 0;
    VCount ++;
    parent[0] = -1; /* 当前树根是0 */

    while (1) {
        V = FindMinDist( Graph, dist );
        /* V = 未被收录顶点中dist最小者 */
        if ( V==ERROR ) /* 若这样的V不存在 */
            break;   /* 算法结束 */
            
        /* 将V及相应的边<parent[V], V>收录进MST */
        E->V1 = parent[V];
        E->V2 = V;
        E->Weight = dist[V];
        InsertEdge( MST, E );
        TotalWeight += dist[V];
        dist[V] = 0;
        VCount++;
        
        for( W=0; W<Graph->Nv; W++ ) /* 对图中的每个顶点W */
            if ( dist[W]!=0 && Graph->G[V][W]<INFINITY ) {
            /* 若W是V的邻接点并且未被收录 */
                if ( Graph->G[V][W] < dist[W] ) {
                /* 若收录V使得dist[W]变小 */
                    dist[W] = Graph->G[V][W]; /* 更新dist[W] */
                    parent[W] = V; /* 更新树 */
                }
            }
    } /* while结束*/
    if ( VCount < Graph->Nv ) /* MST中收的顶点不到|V|个 */
       TotalWeight = ERROR;
    return TotalWeight;   /* 算法执行完毕,返回最小权重和或错误标记 */
}

邻接表存储-Kruscal最小生成树算法

/* 邻接表存储 - Kruskal最小生成树算法 */

/*-------------------- 顶点并查集定义 --------------------*/
typedef Vertex ElementType; /* 默认元素可以用非负整数表示 */
typedef Vertex SetName;     /* 默认用根结点的下标作为集合名称 */
typedef ElementType SetType[MaxVertexNum]; /* 假设集合元素下标从0开始 */

void InitializeVSet( SetType S, int N )
{ /* 初始化并查集 */
    ElementType X;

    for ( X=0; X<N; X++ ) S[X] = -1;
}

void Union( SetType S, SetName Root1, SetName Root2 )
{ /* 这里默认Root1和Root2是不同集合的根结点 */
    /* 保证小集合并入大集合 */
    if ( S[Root2] < S[Root1] ) { /* 如果集合2比较大 */
        S[Root2] += S[Root1];     /* 集合1并入集合2  */
        S[Root1] = Root2;
    }
    else {                         /* 如果集合1比较大 */
        S[Root1] += S[Root2];     /* 集合2并入集合1  */
        S[Root2] = Root1;
    }
}

SetName Find( SetType S, ElementType X )
{ /* 默认集合元素全部初始化为-1 */
    if ( S[X] < 0 ) /* 找到集合的根 */
        return X;
    else
        return S[X] = Find( S, S[X] ); /* 路径压缩 */
}

bool CheckCycle( SetType VSet, Vertex V1, Vertex V2 )
{ /* 检查连接V1和V2的边是否在现有的最小生成树子集中构成回路 */
    Vertex Root1, Root2;

    Root1 = Find( VSet, V1 ); /* 得到V1所属的连通集名称 */
    Root2 = Find( VSet, V2 ); /* 得到V2所属的连通集名称 */

    if( Root1==Root2 ) /* 若V1和V2已经连通,则该边不能要 */
        return false;
    else { /* 否则该边可以被收集,同时将V1和V2并入同一连通集 */
        Union( VSet, Root1, Root2 );
        return true;
    }
}
/*-------------------- 并查集定义结束 --------------------*/

/*-------------------- 边的最小堆定义 --------------------*/
void PercDown( Edge ESet, int p, int N )
{ /* 改编代码4.24的PercDown( MaxHeap H, int p )    */
  /* 将N个元素的边数组中以ESet[p]为根的子堆调整为关于Weight的最小堆 */
    int Parent, Child;
    struct ENode X;

    X = ESet[p]; /* 取出根结点存放的值 */
    for( Parent=p; (Parent*2+1)<N; Parent=Child ) {
        Child = Parent * 2 + 1;
        if( (Child!=N-1) && (ESet[Child].Weight>ESet[Child+1].Weight) )
            Child++;  /* Child指向左右子结点的较小者 */
        if( X.Weight <= ESet[Child].Weight ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            ESet[Parent] = ESet[Child];
    }
    ESet[Parent] = X;
}

void InitializeESet( LGraph Graph, Edge ESet )
{ /* 将图的边存入数组ESet,并且初始化为最小堆 */
    Vertex V;
    PtrToAdjVNode W;
    int ECount;

    /* 将图的边存入数组ESet */
    ECount = 0;
    for ( V=0; V<Graph->Nv; V++ )
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
            if ( V < W->AdjV ) { /* 避免重复录入无向图的边,只收V1<V2的边 */
                ESet[ECount].V1 = V;
                ESet[ECount].V2 = W->AdjV;
                ESet[ECount++].Weight = W->Weight;
            }
    /* 初始化为最小堆 */
    for ( ECount=Graph->Ne/2; ECount>=0; ECount-- )
        PercDown( ESet, ECount, Graph->Ne );
}

int GetEdge( Edge ESet, int CurrentSize )
{ /* 给定当前堆的大小CurrentSize,将当前最小边位置弹出并调整堆 */

    /* 将最小边与当前堆的最后一个位置的边交换 */
    Swap( &ESet[0], &ESet[CurrentSize-1]);
    /* 将剩下的边继续调整成最小堆 */
    PercDown( ESet, 0, CurrentSize-1 );

    return CurrentSize-1; /* 返回最小边所在位置 */
}
/*-------------------- 最小堆定义结束 --------------------*/


int Kruskal( LGraph Graph, LGraph MST )
{ /* 将最小生成树保存为邻接表存储的图MST,返回最小权重和 */
    WeightType TotalWeight;
    int ECount, NextEdge;
    SetType VSet; /* 顶点数组 */
    Edge ESet;    /* 边数组 */

    InitializeVSet( VSet, Graph->Nv ); /* 初始化顶点并查集 */
    ESet = (Edge)malloc( sizeof(struct ENode)*Graph->Ne );
    InitializeESet( Graph, ESet ); /* 初始化边的最小堆 */
    /* 创建包含所有顶点但没有边的图。注意用邻接表版本 */
    MST = CreateGraph(Graph->Nv);
    TotalWeight = 0; /* 初始化权重和     */
    ECount = 0;      /* 初始化收录的边数 */

    NextEdge = Graph->Ne; /* 原始边集的规模 */
    while ( ECount < Graph->Nv-1 ) {  /* 当收集的边不足以构成树时 */
        NextEdge = GetEdge( ESet, NextEdge ); /* 从边集中得到最小边的位置 */
        if (NextEdge < 0) /* 边集已空 */
            break;
        /* 如果该边的加入不构成回路,即两端结点不属于同一连通集 */
        if ( CheckCycle( VSet, ESet[NextEdge].V1, ESet[NextEdge].V2 )==true ) {
            /* 将该边插入MST */
            InsertEdge( MST, ESet+NextEdge );
            TotalWeight += ESet[NextEdge].Weight; /* 累计权重 */
            ECount++; /* 生成树中边数加1 */
        }
    }
    if ( ECount < Graph->Nv-1 )
        TotalWeight = -1; /* 设置错误标记,表示生成树不存在 */

    return TotalWeight;
}
举报

相关推荐

0 条评论