目录
一、模型介绍
回测模型:该策略在股票指数日线下运行
1.每隔1个月定时触发
2.计算行业指数过去20个交易日的收益率
3.选取收益率最高的指数的成份股
4.获取了他们的市值数据
5.将仓位调整至市值最大的5只股票上
二、可学习部分
1.将指数板块股票逐一添加到初始化股票列表中
for index in index_universe:
for stock in ContextInfo.get_sector(index):
index_stocks.append(stock)
2. 取前一日的时间
lastdate = timetag_to_datetime(ContextInfo.get_bar_timetag(d - 1), '%Y%m%d')
3.异常处理——遍历指数列表获取收益率
for index in index_list:
ratio = 0
try:
ratio = (his[index][-2] - his[index][0])/his[index][0]
except KeyError:
print('key error:' + index)
except IndexError:
print('list index out of range:' + index)
return_index.append(ratio)
4.使用numpy库排序
best_index = index_list[np.argmax(return_index)]
5.判断股票是否停牌
for stock in index_stock:
if ContextInfo.is_suspended_stock(stock) == False: #股票没停牌
stock_available.append(stock)
三、代码逐行解释
#coding:gbk
import numpy as np
import math
def init(ContextInfo):
MarketPosition ={}
ContextInfo.MarketPosition = MarketPosition #初始化持仓
index_universe = ['399971.SZ','399973.SZ','399699.SZ','399237.SZ','399236.SZ','399432.SZ'] #指数池
index_stocks = [] #股票池
for index in index_universe:
for stock in ContextInfo.get_sector(index):
index_stocks.append(stock)
ContextInfo.set_universe(index_universe+index_stocks) #设定股票池
ContextInfo.day = 20 #取过去20日的收益率
ContextInfo.ratio = 0.8
ContextInfo.holding_amount = 5 #设置买入数量
ContextInfo.accountID='testS'
def handlebar(ContextInfo):
buy_condition = False #初始化买卖条件
sell_condition = False
d = ContextInfo.barpos
lastdate = timetag_to_datetime(ContextInfo.get_bar_timetag(d - 1), '%Y%m%d') #昨天日期
date = timetag_to_datetime(ContextInfo.get_bar_timetag(d), '%Y%m%d') #今天日期
#print(lastdate)
index_list = ['399971.SZ','399973.SZ','399699.SZ','399237.SZ','399236.SZ','399432.SZ'] #指数表
return_index = [] #指数收益表
weight = ContextInfo.ratio/ContextInfo.holding_amount #平均分配权重
size_dict = {}
if (float(date[-4:-2]) != float(lastdate[-4:-2])): #换月了
#print ('---------------------------------------------------------------------------------')
#print ('当前交易日',date,date[-4:-2])
his = ContextInfo.get_history_data(21,'1d','close') #4.1(含)前的21天数据返回字典{股票:段数据}
#print(len(his)) #89只股票
print ("his",his,timetag_to_datetime(ContextInfo.get_bar_timetag(d),"%Y%m%d")) #当前交易日20220401 04
for k in list(his.keys()):
if len(his[k]) == 0: #没有数据就删了
del his[k]
for index in index_list: #把指数表index_list的收益率逐个放到return_index表里面
ratio = 0
try:
ratio = (his[index][-2] - his[index][0])/his[index][0] #分别计算21天涨幅
except KeyError:
print('key error:' + index)
except IndexError:
print('list index out of range:' + index)
return_index.append(ratio)
#print("return_index",return_index)
best_index = index_list[np.argmax(return_index)] # 获取指定数内收益率表现最好的行业
#print("best_index",best_index)
# 获取当天有交易的股票
index_stock = ContextInfo.get_sector(best_index) #取得指数表现最好的股票
#print(index_stock)
stock_available = []
for stock in index_stock: #删选没停牌的股票
if ContextInfo.is_suspended_stock(stock) == False:
stock_available.append(stock)
for stock in stock_available: #清洗过的股票池记录市值到size_dict
if stock in list(his.keys()):
#目前历史流通股本取不到,暂用总股本
if len(his[stock]) >= 2:
stocksize =his[stock][-2] * float(ContextInfo.get_financial_data(['CAPITALSTRUCTURE.total_capital'],[stock],lastdate,date).iloc[0,-1])
size_dict[stock] = stocksize
elif len(his[stock]) == 1:
stocksize =his[stock][-1] * float(ContextInfo.get_financial_data(['CAPITALSTRUCTURE.total_capital'],[stock],lastdate,date).iloc[0,-1])
size_dict[stock] = stocksize
else:
return
#print("size_dict",size_dict)
size_sorted = sorted(list(size_dict.items()), key = lambda item:item[1]) #市值排序
pre_holding = []
for tuple in size_sorted[-ContextInfo.holding_amount:]:
pre_holding.append(tuple[0])
print(tuple[0])
print ('买入备选',pre_holding)
#函数下单
if len(pre_holding) > 0: #有持仓但是不在买入备选里面的卖出
sellshort_list = []
for stock in list(ContextInfo.MarketPosition.keys()):
if stock not in pre_holding and (stock in list(his.keys())):
order_shares(stock,-ContextInfo.MarketPosition[stock],'lastest',his[stock][-1],ContextInfo,ContextInfo.accountID)
print('sell',stock)
sell_condition = True
sellshort_list.append(stock)
if len(sellshort_list) >0: #从持仓表中删除卖出标的
for stock in sellshort_list:
del ContextInfo.MarketPosition[stock]
for stock in pre_holding: #在买入备选表的,但是没有持仓,买入
if stock not in list(ContextInfo.MarketPosition.keys()):
Lots = math.floor(ContextInfo.ratio * (1.0/len(pre_holding)) * ContextInfo.capital / (his[stock][-1] * 100))
order_shares(stock,Lots *100,'lastest',his[stock][-1],ContextInfo,ContextInfo.accountID)
print('buy',stock)
buy_condition = True
ContextInfo.MarketPosition[stock] = Lots *100