《Removing Objects From Neural Radiance Fields》
链接:https://arxiv.org/pdf/2212.11966.pdf
摘要
神经辐射场 (NeRFs) 正逐步应用到场景表征的各个方向,来实现新颖视图的合成。NeRF 将越来越多内容与其他人共享。不过,在共享 NeRF 之前,可能需要删除个人信息或难看的物体。使用当前的 NeRF 编辑框架不容易实现这种删除。我们提出了一个框架,用于从 RGBD 序列创建的 NeRF 表示中删除对象。我们的 NeRF 修复方法利用了最近在 2D 图像修复方面的工作,并由 serprovided mask 指导。我们的算法以基于置信度的视图选择程序为基础。它选择在创建 NeRF 时使用那些单独的 2D 修复图像,以便生成的修复 NeRF 是 3D 一致的。我们表明我们的 NeRF 编辑方法对于以多视图连贯方式合成合理的修复是有效的。
整体流程
网络架构
结论