高精度加法
题目链接
#include<bits/stdc++.h>
using namespace std;
const int N = 100;
string s1, s2;
int a[N], b[N]; // 也可以使用vector
int main()
{
cin >> s1 >> s2;
reverse (s1.begin(), s1.end());
reverse (s2.begin(), s2.end());
int n = s1.size(), m = s2.size();
for (int i = 0;i < n;i ++)
a[i] = s1[i] - '0';
for (int i = 0;i < m;i ++)
b[i] = s2[i] - '0';
// 非就地
int c[N];
memset (c, 0, sizeof c);
for (int i = 0;i < max(n, m);i ++) {
c[i] += a[i] + b[i];
c[i+1] = c[i] / 10;
c[i] %= 10;
}
int len = max(n, m);
if (c[len]) len ++;
for (int i = len-1;i >= 0;i --) cout << c[i];
// 就地 1
/*
int c = 0;
for (int i = 0;i <= max(n, m);i ++) {
a[i] += c + b[i];
c = a[i] / 10;
a[i] %= 10;
}
int len = max(n, m);
if (a[len]) len ++;
for (int i = len-1;i >= 0;i --) cout << a[i];
*/
// 就地 2
/*
for (int i = 0;i < max(n, m);i ++) {
a[i] += b[i];
a[i+1] += a[i] / 10;
a[i] %= 10;
}
int len = max(n, m);
if (a[len]) len ++;
for (int i = len-1;i >= 0;i --) cout << a[i];
*/
return 0;
}
高精度乘法
高精度乘以高精度
题目链接
不压位
#include<bits/stdc++.h>
using namespace std;
const int N = 1e4+10;
string s1, s2;
int a[N], b[N], c[N];
int main()
{
cin >> s1 >> s2;
reverse (s1.begin(), s1.end());
reverse (s2.begin(), s2.end());
int n = s1.size(), m = s2.size();
for (int i = 0;i < n;i ++)
a[i] = s1[i] - '0';
for (int i = 0;i < m;i ++)
b[i] = s2[i] - '0';
for (int i = 0;i < n;i ++)
for (int j = 0;j < m;j ++) {
c[i+j] += a[i] * b[j];
c[i+j+1] += c[i+j] / 10;
c[i+j] %= 10;
}
int len = n + m - 1;
while (c[len]) len ++;
for (int i = len-1;i >= 0;i --) cout << c[i];
return 0;
}
压位
#include<bits/stdc++.h>
using namespace std;
const int N = 1e4+10;
string s1, s2;
int a[N], b[N], c[N];
int main()
{
cin >> s1 >> s2;
if (s1 == "0" || s2 == "0") { // !
cout << 0;
return 0;
}
reverse (s1.begin(), s1.end());
reverse (s2.begin(), s2.end());
int n = s1.size(), m = s2.size();
int nn = -1, mm = -1;
for (int i = 0, base = 1;i < n;i ++, base *= 10)
if (i%4 == 0) a[++nn] = s1[i] - '0', base = 1;
else a[nn] += base * (s1[i] - '0');
for (int i = 0, base = 1;i < m;i ++, base *= 10)
if (i%4 == 0) b[++mm] = s2[i] - '0', base = 1;
else b[mm] += base * (s2[i] - '0');
nn ++, mm ++;
for (int i = 0;i < nn;i ++)
for (int j = 0;j < mm;j ++) {
c[i+j] += a[i] * b[j];
c[i+j+1] += c[i+j] / 10000; // !
c[i+j] %= 10000; // !
}
int len = nn + mm - 1;
while (c[len]) len ++;
cout << c[len-1]; // !
for (int i = len-2;i >= 0;i --) printf ("%04d", c[i]); // !
return 0;
}
高精度乘以低精度
#include<bits/stdc++.h>
using namespace std;
const int N = 100;
string s;
int a[N], x;
int main()
{
cin >> s >> x;
if (s == "0" || x == 0) {
cout << 0 << endl;
return 0;
}
reverse (s.begin(), s.end());
int n = s.size();
for (int i = 0;i < n;i ++)
a[i] = s[i] - '0';
int c = 0;
for (int i = 0;i < n;i ++) {
a[i] = a[i] * x + c;
c = a[i] / 10;
a[i] %= 10;
}
int len = n;
while (c) a[len ++] = c%10, c /= 10;
for (int i = len-1;i >= 0;i --) cout << a[i];
return 0;
}
高精度减法
题目链接
#include<bits/stdc++.h>
using namespace std;
const int N = 10090;
int a[N], b[N], c[N];
string s1, s2, flag = "";
bool change (string s1, string s2) {
if (s1.size() == s2.size()) return s1 < s2;
if (s1.size() < s2.size()) return true;
return false;
}
int main()
{
cin >> s1 >> s2;
if (s1 == s2) {
cout << 0 << endl;
return 0;
}
if (change(s1, s2)) flag = "-", swap(s1, s2);
reverse (s1.begin(), s1.end());
reverse (s2.begin(), s2.end());
int n = s1.size (), m = s2.size ();
for (int i = 0;i < n;i ++) a[i] = s1[i] - '0';
for (int i = 0;i < m;i ++) b[i] = s2[i] - '0';
for (int i = 0;i < max(n, m);i ++) {
c[i] += a[i] - b[i];
if (c[i] < 0)
c[i] += 10, c[i+1] --;
}
int len = max(n, m);
while (len > 0 && c[len-1] == 0) len --; // len只要 -- 的,一定要加上 >0 的限制,保证全0时也能输出一个0
cout << flag;
for (int i = len-1;i >= 0;i --) cout << c[i];
return 0;
}
高精度除法
有能力的可以去“Acwing-794-高精度除法”提交。
由于没钱,无处提交,不能保证能过。
如果有有钱心善的人愿意帮我提交一下那最好不过了(
高精度除以低精度
#include<bits/stdc++.h>
using namespace std;
const int N = 100;
string s;
int x, m;
int c[N];
int main()
{
cin >> s >> x;
int n = s.size (), r = 0;
for (int i = 0;i < n;i ++) {
r = r * 10 + (s[i] - '0');
c[m ++] = r / x;
r %= x;
}
int i = 0;
while (i < m-1 && !c[i]) i ++; // i < m-1:保证全0时也能输出一个0
for (;i < m;i ++) cout << c[i];
cout << endl << r << endl;
return 0;
}
高精度除以高精度
#include<bits/stdc++.h>
using namespace std;
const int N = 1e4+10;
bool great (string s1, string s2) {
if (s1.size () == s2.size ()) return s1 >= s2; // >= !!!!
if (s1.size () > s2.size ()) return true;
return false;
}
string sub (string s1, string s2) {
int a[N], b[N], c[N];
memset (a, 0, sizeof a);
memset (b, 0, sizeof b);
memset (c, 0, sizeof c);
reverse (s1.begin(), s1.end());
reverse (s2.begin(), s2.end());
int n = s1.size (), m = s2.size ();
int len = max(n, m);
for (int i = 0;i < n;i ++) a[i] = s1[i] - '0';
for (int i = 0;i < m;i ++) b[i] = s2[i] - '0';
for (int i = 0;i < len;i ++) {
c[i] += a[i] - b[i];
if (c[i] < 0) c[i] += 10, c[i+1] --;
}
while (c[len-1] == 0) len --;
string s = "";
for (int i = len - 1;i >= 0;i --)
s += c[i] + '0';
return s;
}
int main()
{
string s1, s2;
cin >> s1 >> s2;
string r = "";
int n = s1.size (), len = 0;
int c[N];
memset (c, 0, sizeof c);
for (int i = 0;i < n;i ++) {
int ans = 0;
r += s1[i];
while (great (r, s2))
r = sub (r, s2),
ans ++;
c[len ++] = ans;
}
int i = 0;
while (i < len && c[i] == 0) i ++;
if (i == len) cout << 0;
else for (;i < len;i ++) cout << c[i];
cout << endl << (r == ""? "0" : r) << endl;
return 0;
}