0
点赞
收藏
分享

微信扫一扫

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)



D. Lipshitz Sequence



time limit per test



memory limit per test



input



output


A function 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Div. 2

 is called Lipschitz continuous if there is a real constant K such that the inequality |f(x) - f(y)| ≤ K·|x - y| holds for all 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Div. 2_02

. We'll deal with a more... discrete version of this term.For an array 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_D. Lipshitz Sequence_03

, we define it's Lipschitz constant 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_D. Lipshitz Sequence_04

 as follows:

  • ifn< 2,
  • Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_单调栈_05

  • ifn≥ 2,
  • Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Round #333_06

  • over all 1 ≤i<jn

In other words, 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Round #333_07

 is the smallest non-negative integer such that |h[i] - h[j]| ≤ L·|i - j| holds for all 1 ≤ i, j ≤ n.You are given an array 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Div. 2_08

 of size n and q queries of the form [l, r]. For each query, consider the subarray 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Div. 2_09

; determine the sum of Lipschitz constants of all subarrays of 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Codeforces_10

.

Input

The first line of the input contains two space-separated integers n and q (2 ≤ n ≤ 100 000 and 1 ≤ q ≤ 100) — the number of elements in array 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Div. 2_08

 and the number of queries respectively.The second line contains n space-separated integers 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_D. Lipshitz Sequence_12

 (

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Div. 2_13

).

The following q lines describe queries. The i-th of those lines contains two space-separated integers li and ri (1 ≤ li < ri ≤ n).


Output

Print the answers to all queries in the order in which they are given in the input. For the i-th query, print one line containing a single integer — the sum of Lipschitz constants of all subarrays of 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Round #333_14

.

Examples


input


10 4
1 5 2 9 1 3 4 2 1 7
2 4
3 8
7 10
1 9


output


17
82
23
210


input


7 6
5 7 7 4 6 6 2
1 2
2 3
2 6
1 7
4 7
3 5


output


2
0
22
59
16
8


Note

In the first query of the first sample, the Lipschitz constants of subarrays of 

Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Codeforces_15

 with length at least 2

  • Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Div. 2_16

  • Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_D. Lipshitz Sequence_17

  • Codeforces Round #333 (Div. 2) D. Lipshitz Sequence (单调栈)_Div. 2_18

The answer to the query is their sum.




题意:给你一组数,q个询问,每次询问一个区间。让你求出这个区间中各个子区间中相邻两个数绝对值的最大值之和。

题解:预处理一下。然后单调栈乱搞一下就可以了。

代码:


#pragma comment(linker, "/STACK:102400000,102400000")
//#include<bits/stdc++.h>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<vector>
#include<map>
#include<cmath>
#include<queue>
#include<set>
#include<stack>
#include <utility>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
#define mst(a) memset(a, 0, sizeof(a))
#define M_P(x,y) make_pair(x,y)
#define rep(i,j,k) for (int i = j; i <= k; i++)
#define per(i,j,k) for (int i = j; i >= k; i--)
#define lson x << 1, l, mid
#define rson x << 1 | 1, mid + 1, r
const int lowbit(int x) { return x&-x; }
const double eps = 1e-8;
const int INF = 1e9+7;
const ll inf =(1LL<<62) ;
const int MOD = 1e9 + 7;
const ll mod = (1LL<<32);
const int N = 3e5+7;
const int M=100010;
const int maxn=1e5+7;
template <class T1, class T2>inline void getmax(T1 &a, T2 b) {if (b>a)a = b;}
template <class T1, class T2>inline void getmin(T1 &a, T2 b) {if (b<a)a = b;}
int read(){
int v = 0, f = 1;char c =getchar();
while( c < 48 || 57 < c ){if(c=='-') f = -1;c = getchar();}
while(48 <= c && c <= 57) v = v*10+c-48, c = getchar();
return v*f;}
int n,q;
int a[maxn],b[maxn];
pii p[maxn];
ll solve(int l,int r)
{
ll ans=0;
ll sum=0;
int rear=0;
for(int i=l;i<r;i++)
{
int num=1;
while(rear && b[i] >= p[rear].first)
{
sum-=(1ll * p[rear].first * p[rear].second);
num+=p[rear].second;
rear--;
}
p[++rear].first=b[i];
p[rear].second=num;
sum+=(1ll*b[i]*num);
ans+=sum;
}
return ans;
}
int main()
{
cin>>n>>q;
for(int i=1;i<=n;i++)cin>>a[i];
for(int i=1;i<n;i++)b[i]=abs(a[i]-a[i+1]);
while(q--)
{
int l,r;
cin>>l>>r;
cout<<solve(l,r)<<endl;
}
return 0;
}



举报

相关推荐

0 条评论