import numpy as np
import matplotlib.pyplot as plt
learning_rate=15 # 多次调整
epochs=1000
# input_features=1
# input_size=1000
# output_features=1
# output_size=1000
w=np.ones((1000,))
b=np.ones((1000,))
x=np.random.randn(1000,)
y=np.array([xi**3 for xi in x])
print(x.shape,y.shape)
plt.scatter(x,y)
plt.show()
(1000,) (1000,)
$$
loss=\frac{1}{n}(wx+b-y)^2
\
\frac{\delta loss}{\delta w}=\frac{2x}{n}[wx+(b-y)]
\
\frac{\delta loss}{\delta b}=\frac{2}{n}[wx+b-y]
\
$$
def getloss(pred,label):
"""
pred:prediction array whose shape is (n,)
label:label array whose shape is (n,)
"""
# using MAE loss function
n=len(pred)
loss=np.sum((pred-label))/n
return loss
def gradient_decent(init_weight,init_bias,x_train,y_train,epochs,lr):
loss=0.
pred=0.
w=init_weight
b=init_bias
n=len(x_train)
for epoch in range(epochs):
if (epoch+1)%100==0:
print("Epoch {}/{}:".format(epoch+1,epochs))
# 前向传播
pred=w*x_train+b
loss=getloss(pred,y_train)
# 更新损失
grad_w=(pred-y_train)*(2*x_train)/n
grad_b=(pred-y_train)*(2/n)
w=w-learning_rate*grad_w
b=b-learning_rate*grad_b
if (epoch+1)%100==0:
print("Loss:{}".format(loss))
return w,b
w,b=gradient_decent(w,b,x,y,epochs,learning_rate)
plot_x=np.linspace(-3,3,1000)
prediction=w*plot_x+b
print(plot_x.shape,prediction.shape)
plt.scatter(plot_x,prediction,c='r')
plt.scatter(x,y)
plt.show()
Epoch 100/1000:
Loss:4.1350661425936813e-16
Epoch 200/1000:
Loss:4.1350661425936813e-16
Epoch 300/1000:
Loss:4.1350661425936813e-16
Epoch 400/1000:
Loss:4.1350661425936813e-16
Epoch 500/1000:
Loss:4.1350661425936813e-16
Epoch 600/1000:
Loss:4.1350661425936813e-16
Epoch 700/1000:
Loss:4.1350661425936813e-16
Epoch 800/1000:
Loss:4.1350661425936813e-16
Epoch 900/1000:
Loss:4.1350661425936813e-16
Epoch 1000/1000:
Loss:4.1350661425936813e-16
(1000,) (1000,)