由上可得两个同余方程可得一个线性方程 ,linearEquation(m1,-m2,a2-a1) 可解出y1
代回x=a1+m1y1,得:x0=a1+m1y1 ==> x=x0+k*min(m1,m2),得一个新方程:
x=x0(mod min(m1,m2))
此处涉及的是逐级合并法,最终的x的结果为上一个x关于最后两式子的m的最小公倍数的同余方程,即x=x0(mod min(m(n-1),m(n)))
以POJ-1006生理周期为例题
思路:
周期固定:23,28,33。依照题意有:d1+23*k1=x k是一个倍数
d2+28*k2=x 不难发现这其实是一组同余方程组
d3+33*k3=x
依照上文可将其化为:x≡d1%23
x≡d2%28
x≡d3%33
此时可以将d1、d2、d3看为一个a数组;23、28、33看为数组m;将其传入方法
linearEquationGroup(a,m)中。
不过需要注意的是这里所求的时间是:x-d。
有因为题意要求所求的时间小于21252,并且 所有给定时间(d)是非负的并且小于365。有可能x在d的前面(假如d为300,往后过了一段日子到了第二年的某天达到要求,此时x是处于d的前面,即x<d)所以当x<d时需要先将x加上21252
代码实现如下:
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class POJ1006Biorhythms {
public static void main(String[] args) throws Exception{
Scanner sc=new Scanner(System.in);
int t=1;
List<long[]> aList=new ArrayList<long[]>();
List<Long> dList=new ArrayList<Long>();
while (sc.hasNext()){
long[] a={sc.nextLong(),sc.nextLong(),sc.nextLong()};
long d=sc.nextLong();
if (a[0]==-1 && a[1]==-1 && a[2]== -1 && d==-1){
break;
}else {
aList.add(a);
dList.add(d);
}
}
for (int i=0;i<aList.size();i++){
long[] a=aList.get(i);
long d=dList.get(i);
long[] m={23,28,33};
long res=ExtGcd.linearEquationGroup(a,m);
while (res<=d){
res+=21252;
}
System.out.println("Case"+(t++)+": he next tirple peak occurs in "+(res-d)+" days");
}
}
private static class ExtGcd {
static long x;
static long y;
/*调用完成后x y是ax+by=gcd(a,b)的解*/
public static long ext_gcd(long a, long b) {
if (b == 0) {
x = 1;
y = 0;
return a;
}
long res = ext_gcd(b, a % b);
long x1 = x;
x = y;
y = x1 - a / b * y;
return res;
}
/**
* 线性方程
* ax+by=m 当m是gcd(a,b)倍数时有解
* 等价于ax=m mod b
*/
public static long linearEquation(long a, long b, long m) throws Exception {
long d = ext_gcd(a, b);
//m不是gcd(a,b)的倍数,这个方程无解
if(m % d!=0)throw new Exception("无解");
long n = m / d;
x *= n;
y *= n;
return d;
}
/**
*求线性同余方程组
*x=a1(%m1)
* =a2(%m2)
* =a3(%m3)
*x=a1+m1y1
*x=a2+m2y2
*==>m1y1-m2y2=a2-a1 这是一个线性方程,可解出y1 linearEquation(m1,-m2,a2-a1)
*代回x=a1+m1y1,得:x0=a1+m1y1 --> x=x0+k*min(m1,m2),得一个新方程:
*x=x0(mod min(m1,m2))
*/
public static long linearEquationGroup(long[] a,long[] m)throws Exception{
int len=a.length;
if(len == 0 && a[0] == 0){
return m[0];
}
for(int i=1;i<len;i++){
//这里往前看是两个方程
long a2_a1=a[i]-a[i-1];
long d=linearEquation(m[i-1],-m[i],a2_a1);
//现在的x是y1,用y1求得一个特解
long x0=a[i-1]+m[i-1]*x;
long min=m[i-1]*m[i]/d;
a[i]=(x0%min+min)%min;//x0变成正数
m[i]=min;
}
//合并完成之后,只有一个方程:x=a[len](%m[len])
//long d=linearEquation(1,m[len-1],a[len-1]);
return a[len-1]%m[len-1];
}
}
}