1、一共5个镜像:2024/6/13
$ git clone https://github.com/infiniflow/ragflow.git
$ cd ragflow/docker
$ chmod +x ./entrypoint.sh
$ docker compose up -d #老失败,以下单独拉取
docker pull infiniflow/ragflow:dev 【RAGFLOW_VERSION=dev 10.1GB】
docker pull docker.elastic.co/elasticsearch/elasticsearch:8.11.3 【STACK_VERSION=8.11.3】
docker pull mysql:5.7.18
docker pull quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z
docker pull redis:7.2.4
- docker compose up命令(-d:表示以守护进程(后台)模式运行)会根据 docker-compose.yml 文件中定义的服务配置,创建并启动相关的容器,自动下载 RAGFlow 的“开发版本 ”docker 镜像。如果你想下载并运行特定版本的 docker 镜像,在 docker/.env 文件中找到 RAGFLOW_VERSION 变量,将其改为对应版本。例如 RAGFLOW_VERSION=v0.7.0
atc@WIN11-Room208:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
infiniflow/ragflow dev 9fa1045436e3 26 hours ago 29.4GB
swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow dev 9fa1045436e3 26 hours ago 29.4GB
redis 7.2.4 5a93f6b2e391 2 months ago 173MB
quay.io/minio/minio RELEASE.2023-12-20T01-00-02Z 5702ea361420 5 months ago 206MB
docker.elastic.co/elasticsearch/elasticsearch 8.11.3 2892d2363c3c 6 months ago 2.19GB
mysql 5.7.18 d178dffba8d8 6 years ago 575MB
运行后:
atc@WIN11-Room208:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
bd77411ab716 swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:dev "./entrypoint.sh" 4 hours ago Up 4 hours 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 0.0.0.0:9380->9380/tcp ragflow-server
8ca697b33948 redis:7.2.4 "docker-entrypoint.s…" 4 hours ago Up 4 hours 0.0.0.0:6379->6379/tcp ragflow-redis
b57e6da21132 quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z "/usr/bin/docker-ent…" 4 hours ago Up 4 hours 0.0.0.0:9000-9001->9000-9001/tcp ragflow-minio
eb7df0b4d1f9 docker.elastic.co/elasticsearch/elasticsearch:8.11.3 "/bin/tini -- /usr/l…" 4 hours ago Up 4 hours (healthy) 9300/tcp, 0.0.0.0:1200->9200/tcp ragflow-es-01
abaeb3b121e0 mysql:5.7.18 "docker-entrypoint.s…" 4 hours ago Up 4 hours (healthy) 0.0.0.0:5455->3306/tcp ragflow-mysql
2、访问: enter http://IP_OF_YOUR_MACHINE, default HTTP serving port 80,随便注册一个账户即可。
http://192.168.1.16:80
3、RAGFlow中模型提供商设置:
- 添加ollama:
- 宿主机运行Ollama,添加用户环境变量 OLLAMA_HOST:0.0.0.0【Ollama binds 127.0.0.1 port 11434 by default. Change the bind address with the OLLAMA_HOST environment variable.】
- 在模型提供商添加 LLM页面,基础 Url处输入:192.168.1.16:11434/api,模型名称:qwen2:7b
4、