0
点赞
收藏
分享

微信扫一扫

自动驾驶感知系统的神经辐射场(NeRF)

一、实时NeRF感知架构

graph TD
A[多传感器输入] --> B[神经特征编码]
B --> C[辐射场重建]
C --> D[时空预测]
D --> E[驾驶决策]

subgraph 传感器融合
A1[LiDAR点云] --> A2[相机图像]
A3[雷达数据] --> A4[IMU姿态]
end

subgraph 神经编码
B1[多尺度特征提取] --> B2[隐式表征]
B3[位置编码] --> B4[视角依赖]
end

subgraph 辐射场
C1[密度场] --> C2[RGB预测]
C3[不确定性估计]
end

subgraph 预测
D1[运动轨迹预测] --> D2[场景补全]
D3[遮挡推理]
end

二、核心算法实现

1. 多模态特征编码

import torch
import torch.nn as nn

class MultiModalEncoder(nn.Module):
    def __init__(self):
        super().__init__()
        # LiDAR分支
        self.lidar_conv = nn.Sequential(
            nn.Conv1d(3, 32, 5),
            nn.ReLU(),
            PointNetSetAbstraction()
        )
        
        # 相机分支
        self.image_encoder = EfficientNetB0()
        
        # 融合层
        self.cross_attn = nn.MultiheadAttention(256, 8)
        
    def forward(self, lidar, image, calib):
        # LiDAR特征
        lidar_feat = self.lidar_conv(lidar.transpose(1,2))
        
        # 图像特征
        img_feat = self.image_encoder(image)
        
        # 坐标变换
        projected = project_lidar_to_image(lidar, calib)
        
        # 跨模态注意力融合
        fused, _ = self.cross_attn(
            lidar_feat, 
            img_feat, 
            img_feat,
            key_padding_mask=projected
        )
        return fused

2. 实时NeRF渲染

class InstantNGP(torch.nn.Module):
    def __init__(self, hash_size=19):
        super().__init__()
        # 多分辨率哈希编码
        self.embedder = MultiResHashGrid(
            n_levels=16, 
            n_features_per_level=2,
            log2_hashmap_size=hash_size
        )
        
        # 微型MLP
        self.mlp = nn.Sequential(
            nn.Linear(32+27, 64),  # 哈希特征+位置编码
            nn.ReLU(),
            nn.Linear(64, 4)       # RGB + 密度
        )
    
    def render_rays(self, rays_o, rays_d):
        # 采样策略优化
        samples = self.adaptive_sampling(rays_o, rays_d)
        
        # 查询辐射场
        features = self.embedder(samples)
        positions = positional_encoding(samples, 10)
        rgb_sigma = self.mlp(torch.cat([features, positions], dim=-1))
        
        # 体积渲染
        return volume_rendering(rgb_sigma, samples.t)

    def adaptive_sampling(self, rays_o, rays_d):
        # 粗采样:16个均匀点
        coarse_samples = uniform_sample_along_ray(rays_o, rays_d, n=16)
        
        # 重要性采样:基于粗密度分布
        with torch.no_grad():
            coarse_feat = self.embedder(coarse_samples)
            coarse_pos = positional_encoding(coarse_samples, 5)
            coarse_sigma = self.mlp(torch.cat([coarse_feat, coarse_pos], -1))[..., 3]
            pdf = compute_pdf(coarse_sigma)
        
        # 细采样:64个重要性点
        fine_samples = importance_sample_along_ray(pdf, n=64)
        return torch.cat([coarse_samples, fine_samples], dim=1)

三、运动预测与场景补全

1. 4D动态场景建模

class DynamicNeRF(nn.Module):
    def __init__(self):
        super().__init__()
        # 时空编码器
        self.spatial_encoder = MultiResHashGrid()
        self.temporal_encoder = nn.GRU(input_size=4, hidden_size=16, num_layers=2)
        
        # 运动场预测
        self.motion_field = nn.Sequential(
            nn.Linear(32+16, 64),
            nn.ReLU(),
            nn.Linear(64, 3)  # 位移向量
        )
    
    def forward(self, xyz, t):
        # 空间特征
        spatial_feat = self.spatial_encoder(xyz)
        
        # 时间特征
        temporal_feat, _ = self.temporal_encoder(t.view(1,1,-1))
        
        # 预测运动
        displacement = self.motion_field(
            torch.cat([spatial_feat, temporal_feat.squeeze(0)], dim=-1)
        )
        
        # 变形点
        warped_xyz = xyz + displacement
        
        # 查询辐射场
        return self.radiance_field(warped_xyz)

2. 遮挡推理模块

class OcclusionReasoner(nn.Module):
    def __init__(self):
        super().__init__()
        self.occ_net = nn.Sequential(
            nn.Conv3d(32, 64, 3, padding=1),
            nn.ReLU(),
            nn.Conv3d(64, 32, 3, padding=1),
            nn.Sigmoid()  # 输出遮挡概率
        )
    
    def forward(self, scene_feat):
        # 构建3D特征体
        voxel_grid = build_voxel_grid(scene_feat, resolution=128)
        
        # 3D卷积推理
        occlusion_map = self.occ_net(voxel_grid)
        
        # 射线遮挡检测
        def ray_occlusion_test(ray):
            samples = sample_along_ray(ray)
            voxel_indices = world_to_voxel(samples)
            occ_probs = occlusion_map[voxel_indices]
            return occ_probs.mean() > 0.7
        
        return ray_occlusion_test

四、嵌入式优化技术

1. NeRF模型蒸馏

def distill_nerf(teacher, student, dataset):
    # 知识蒸馏损失
    def kd_loss(teacher_out, student_out):
        rgb_loss = F.mse_loss(student_out[..., :3], teacher_out[..., :3])
        sigma_loss = F.kl_div(
            F.log_softmax(student_out[..., 3], dim=-1),
            F.softmax(teacher_out[..., 3], dim=-1)
        )
        return rgb_loss + 0.1*sigma_loss
    
    # 训练循环
    for rays, target in dataset:
        with torch.no_grad():
            teacher_pred = teacher(rays)
        
        student_pred = student(rays)
        loss = kd_loss(teacher_pred, student_pred)
        loss.backward()
        optimizer.step()
    
    # 量化感知训练
    quantized_student = torch.quantization.quantize_dynamic(
        student, 
        {nn.Linear}, 
        dtype=torch.qint8
    )
    return quantized_student

2. 硬件加速推理

// NVIDIA TensorRT加速NeRF推理
nvinfer1::ICudaEngine* build_nerf_engine() {
    auto builder = nvinfer1::createInferBuilder(logger);
    auto network = builder->createNetworkV2(0);
    
    // 输入定义
    auto ray_input = network->addInput("rays", nvinfer1::DataType::kFLOAT, 
        nvinfer1::Dims3{3, 1024, 1});
    
    // 哈希编码层
    auto hash_layer = add_hash_grid_plugin(network, *ray_input, hash_params);
    
    // MLP层融合
    auto mlp = network->addFullyConnected(*hash_layer->getOutput(0), 64);
    mlp->setName("mlp1");
    // ... 添加更多层
    
    // 输出
    auto output = mlp->getOutput(0);
    output->setName("rgb_sigma");
    network->markOutput(*output);
    
    // 配置优化
    auto config = builder->createBuilderConfig();
    config->setFlag(nvinfer1::BuilderFlag::kFP16);
    config->setMemoryPoolLimit(nvinfer1::MemoryPoolType::kWORKSPACE, 1 << 30);
    
    // 序列化引擎
    return builder->buildEngineWithConfig(*network, *config);
}

class AutoPerceptionSystem:
    def __init__(self, config):
        # 初始化模型
        self.reconstructor = load_nerf(config['model_path'])
        self.predictor = DynamicPredictor()
        self.fallback = PerceptionFallback()
        
        # 硬件加速
        self.engine = TensorRTEngine(config['trt_plan'])
        self.engine.activate()
    
    def process_frame(self, sensor_data):
        try:
            # 模式选择
            consistency = cross_modal_consistency(sensor_data)
            self.fallback.update_mode(sensor_data.status, consistency)
            
            # 感知处理
            if self.fallback.current_mode == 'FULL_NeRF':
                nerf_input = preprocess(sensor_data)
                nerf_output = self.engine.infer(nerf_input)
                scene = self.reconstructor.decode(nerf_output)
                dynamic_scene = self.predictor.predict(scene)
            else:
                dynamic_scene = self.fallback.perceive(sensor_data)
                
            return dynamic_scene
        except PerceptionException as e:
            trigger_safe_stop()
            upload_error_log(e)

举报

相关推荐

0 条评论