本文详细介绍了归并排序的算法思想、代码实现和算法效率分析,还包括可视化动图,易理解!
Let’s go!🏃♂️
数据结构-排序(八)归并排序
一、算法思想
二、代码实现
#include <iostream>
#include <string>
using namespace std;
int *b; //辅助数组
/**
* 归并操作
* @param arr
* @param low
* @param mid
* @param high
*/
void Merge(int arr[], int low, int mid, int high) {
int i, j, k;
for (k = low; k <= high; k++) { //讲arr数组复制到b数组
b[k] = arr[k];
}
for (i = low, j = mid + 1, k = i; i <= mid && j <= high; k++) {
if (b[i] <= b[j]) { //将较小值赋值到A中
arr[k] = b[i++];
}else {
arr[k] = b[j++];
}
}//for
while (i <= mid) {
arr[k++] = b[i++];
}
while (j <= high) {
arr[k++] = b[j++];
}
}
/**
* 归并排序
* @param arr
* @param low
* @param high
*/
void MergeSort(int arr[], int low, int high) {
if (low < high) {
int mid = (low + high) / 2; //中间划分
MergeSort(arr, low, mid); //左半部分归并排序
MergeSort(arr, mid + 1, high); //右半部分归并排序
Merge(arr, low, mid, high); //归并
}
}
/**
* 输出数组
* @param arr
* @param n
*/
void PrintArray(int arr[], int n) {
for (int i = 0; i < n; i++) {
cout << arr[i] << " ";
}
printf("\n");
}
int main() {
int arr[] = {12, 28, 20, 50, 48, 1, 5, 28};
int n = sizeof(arr) / sizeof(arr[0]);
b = (int *)malloc(n * sizeof(int)); //辅助数组
cout << "输出arr初始数组" << endl;
PrintArray(arr, n);
cout << "arr堆排序" << endl;
MergeSort(arr,0, n - 1 );
cout << "输出arr排序后数组" << endl;
PrintArray(arr, n);
return 0;
}