0
点赞
收藏
分享

微信扫一扫

【图像分割】基于分水岭算法实现细胞分割计数matlab源码

皮皮球场 2022-01-07 阅读 64

1 简介

2 源代码

function susanseg
clear all; close all; clc
image= imread('cell.jpg');
% 用SUSAN算法进行边缘检测
image = susan(image,4);
figure, imshow(image,[]);
%imwrite(image, './susanout/susanout.jpg');
% 将image转为二值图像保存后,用图像处理工具
% 把其背景的所有连通区域处理为黑色,即只有细
% 胞体是白色,便于细胞数目的搜索
BW = im2bw(image, graythresh(image));
bounder_area = length(find(BW==0));
%imwrite(BW, './susanout/bw.jpg');
figure, imshow(BW);


% 申明全局变量
global B Dir m n;
B = imread('./blackbackground.jpg');
B = im2bw(B, graythresh(B));
[m,n] = size(B);
figure, imshow(B);

% 细胞的总面积,即细胞所占的像素数目,包括细胞的边界
% 由于SUSAN提取出的边界已被增宽,所以将边界像素数除以2
% 来作为细胞的边界像素数目
total_area = length(find(B==1)) + bounder_area/2;
NUM = 5; % 细胞面积阈值
count = 0; % 细胞总数
% 搜索方向向量,4邻域搜索
Dir = [-1 0; 0 1; 1 0; 0 -1;];
% 搜索方向向量,8邻域搜索
%Dir = [-1 0; -1 1; 0 1; 1 1; 1 0; 1 -1; 0 -1; -1 -1;];
for i = 1:m
   for j = 1:n
       if B(i,j)==1 % 是细胞像素
           num = search(i,j,4) + 1; % 计算该细胞的像素数目
           if num>NUM
               count = count  + 1;
           else
               total_area = total_area - num; % 减掉不是细胞的面积
           end
       end
   end
end
%fid = fopen('./susanout/results.txt', 'wt');
fprintf('图像尺寸: %d * %d, SUSAN阈值: 4, 细胞面积阈值: %d\n', ...
   n, m, NUM);
fprintf('细胞总数: %d, 细胞总面积: %.2f, 平均细胞面积: %.2f\n', ...
   count, total_area, total_area/count);
%fprintf(fid,'图像尺寸: %d * %d, SUSAN阈值: 4, 细胞面积阈值: %d\n', ...
%   n, m, NUM);
%fprintf(fid,'细胞总数: %d, 细胞总面积: %.2f, 平均细胞面积: %.2f\n', ...
%   count, total_area, total_area/count);
%fclose(fid);
end
% -----------------------------------------------------------------------
% 
% This function uses the SUSAN algorithm to find edges within an image
% 
%
% >>image_out = susan(image_in,threshold)
%
%
% Input parameters ... The gray scale image, and the threshold 
% image_out .. (class: double) image indicating found edges
% typical threshold values may be from 10 to 30
%
%
%The following steps are performed at each image pixel: 
% ( from the SUSAN webpage, http://www.fmrib.ox.ac.uk/~steve/susan/susan/node4.html )
% 
% Place a circular mask around the pixel in question. 
% Calculate the number of pixels within the circular mask which have similar brightness to 
% the nucleus. These define the USAN. 
% Subtract USAN size from geometric threshold to produce edge strength image. 
%
% Estimating moments to find the edge direction has not been implemented . 
% Non-maximal suppresion to remove weak edges has not been implemented yet.
%
% example:
%
% >> image_in=imread('test_pattern.tif');
% >> image = susan(image_in,27);
% >> imshow(image,[]) 
%
%
% Abhishek Ivaturi
% 
% -------------------------------------------------------------------------


function image_out = susan(im,threshold)

% check to see if the image is a color image...
%im= imread('test_pattern.tif')
%threshold=27;
d = length(size(im));
if d==3
   image=double(rgb2gray(im));
elseif d==2
   image=double(im);
end

% mask for selecting the pixels within the circular region (37 pixels, as
% used in the SUSAN algorithm

mask = ([ 0 0 1 1 1 0 0 ;0 1 1 1 1 1 0;1 1 1 1 1 1 1;1 1 1 1 1 1 1;1 1 1 1 1 1 1;0 1 1 1 1 1 0;0 0 1 1 1 0 0]);  


% the output image indicating found edges
R=zeros(size(image));


% define the USAN area
nmax = 3*37/4;

% padding the image
[a b]=size(image);
new=zeros(a+7,b+7);
[c d]=size(new);
new(4:c-4,4:d-4)=image;
 
for i=4:c-4
   
   for j=4:d-4
       
       current_image = new(i-3:i+3,j-3:j+3);
       current_masked_image = mask.*current_image;
  

%   Uncomment here to implement binary thresholding

%         current_masked_image(find(abs(current_masked_image-current_masked_image(4,4))>threshold))=0;         
%         current_masked_image(find(abs(current_masked_image-current_masked_image(4,4))<=threshold))=1;


%   This thresholding is more stable
                
                  
       current_thresholded = susan_threshold(current_masked_image,threshold);
       g=sum(current_thresholded(:));
       
       if nmax<g
           R(i,j) = g-nmax;
       else
           R(i,j) = 0;
       end
   end
end

3 运行结果

4 参考文献

[1]丛培盛, 孙建忠. 分水岭算法分割显微图像中重叠细胞[J]. 中国图象图形学报, 2006, 011(012):1781-1783,插6.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,有科研问题可私信交流。

举报

相关推荐

0 条评论