Given an integer n
. No-Zero integer is a positive integer which doesn't contain any 0 in its decimal representation.
Return a list of two integers [A, B]
where:
-
A
andB
are No-Zero integers. -
A + B = n
It's guarateed that there is at least one valid solution. If there are many valid solutions you can return any of them.
Example 1:
Input: n = 2
Output: [1,1]
Explanation: A = 1, B = 1. A + B = n and both A and B don't contain any 0 in their decimal representation.
Example 2:
Input: n = 11
Output: [2,9]
Example 3:
Input: n = 10000
Output: [1,9999]
Example 4:
Input: n = 69
Output: [1,68]
Example 5:
Input: n = 1010
Output: [11,999]
Constraints:
-
2 <= n <= 10^4
题解:
class Solution {
public:
bool judge(int num) {
while (num > 0) {
int idx = num % 10;
num /= 10;
if (idx == 0) {
return false;
}
}
return true;
}
vector<int> getNoZeroIntegers(int n) {
for (int i = 1; i <= n / 2; i++) {
int k = n - i;
if (judge(i) == true && judge(k) == true) {
return {i, k};
}
}
return {};
}
};