0
点赞
收藏
分享

微信扫一扫

HR真的会嫌弃跳槽频繁的测试人员吗?

目录

背景

一、BMP图片讲解:

二、代码:


背景

1、主要记录下BMP图片的功能,里面包括jpeg格式图片转bmp格式的图片,还有bmp图片的缩放,因为bmp格式的图片一般都很大。

2、网上搜的代码,好多的代码都有依赖,有些是依赖libjpeg.dll,有些是boost,有些是opencv,后面废了不少力气终于找到没有依赖的,太爱了,直接上代码了。

一、BMP图片讲解:

1、BMP(Bitmap)是一种常见的图像文件格式,它是一种无损压缩的图像格式,也就是说,它不会丢失图像的任何细节信息。BMP文件可以存储黑白、灰度或彩色图像,并且可以支持多种位深度和分辨率。

2、BMP图片格式:

  • BMP格式的文件通常包含一个文件头一个位图信息头

文件头包含了文件类型、文件大小、保留字、位图数据偏移量等信息;

位图信息头则包括了图像的宽度、高度、颜色位数、压缩方式、颜色表等信息。

在图像数据中,每个像素都被表示为一组二进制数,其中每个数表示一个颜色分量,如红色、绿色和蓝色。

(1)文件头:bitmap file header

BITMAPFILEHEADER是位图文件头的结构体,用于描述位图文件的格式和属性。

它通常位于位图文件的开头,其长度为14个字节,包含以下字段:


BITMAPFILEHEADER结构体的定义如下:
typedef struct tagBITMAPFILEHEADER {
    WORD  bfType;//文件类型,必须为"BM",占用2个字节
    DWORD bfSize;//文件大小,以字节为单位,占用4个字节
    WORD  bfReserved1;//bfReserved1和bfReserved2:保留字段,占用各2个字节,通常设置为0。
    WORD  bfReserved2;
    DWORD bfOffBits;//bfOffBits:位图数据的偏移量,即位图文件头和位图信息头之后的字节数,占用4个字节。
} BITMAPFILEHEADER;
其中,WORD和DWORD分别表示2个字节和4个字节的无符号整数类型。

(2)位图信息头 : bitmap info header

BITMAPINFOHEADER是Windows中用于描述位图文件头信息的结构体。

它包含了位图的宽度、高度、颜色位深度等信息,用于解析和显示位图文件。


BITMAPINFOHEADER结构体的定义如下:

typedef struct tagBITMAPINFOHEADER {
  DWORD biSize;//结构体的大小,以字节为单位,必须为40。
  LONG  biWidth;//位图的宽度,以像素为单位。
  LONG  biHeight;//位图的高度,以像素为单位。如果值为正数,则表示位图是从上到下的;如果值为负数,则表示位图是从下到上的。
  WORD  biPlanes;//目标设备的位平面数,必须为1
  WORD  biBitCount;//每个像素的位数,可以是1、4、8、16、24或32。
  DWORD biCompression;//指定位图压缩类型。常用的有BI_RGB、BI_RLE8和BI_RLE4。
  DWORD biSizeImage;//位图数据的大小,以字节为单位。
  LONG  biXPelsPerMeter;//目标设备水平方向上每米像素数。
  LONG  biYPelsPerMeter;//目标设备垂直方向上每米像素数。
  DWORD biClrUsed;//位图实际使用的颜色表中的颜色数。
  DWORD biClrImportant;//对图像显示有重要影响的颜色索引数。
} BITMAPINFOHEADER, *PBITMAPINFOHEADER;

BITMAPINFOHEADER结构体是位图文件格式中重要的一部分,通过解析这些信息,可以正确地显示和处理位图文件。

二、代码:

1、头文件:

 /*
  * @Description: BMP图片的功能
  * @Author: Ivy
  * @Date: 2022-04-25 09:34:43
  * @LastEditTime: 2023-02-24 11:28:29
  * @LastEditors: XTZJ-2022OQEHLZ
  */

#pragma once
#include "SingleTon.h"

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string> 
#include <windows.h>//此头文件包含bmp图片的文件头和位图信息头

/**
//1、文件头:bitmap file header
typedef struct tagBITMAPFILEHEADER {
	WORD  bfType;//文件类型,必须为"BM",占用2个字节
	DWORD bfSize;//文件大小,以字节为单位,占用4个字节
	WORD  bfReserved1;//bfReserved1和bfReserved2:保留字段,占用各2个字节,通常设置为0。
	WORD  bfReserved2;
	DWORD bfOffBits;//bfOffBits:位图数据的偏移量,即位图文件头和位图信息头之后的字节数,占用4个字节。
}  BITMAPFILEHEADER, *LPBITMAPFILEHEADER, *PBITMAPFILEHEADER;

//2、位图信息头 : bitmap info header
typedef struct tagBITMAPINFOHEADER {
    DWORD biSize;//结构体的大小,以字节为单位,必须为40。
    LONG  biWidth;//位图的宽度,以像素为单位。
    LONG  biHeight;//位图的高度,以像素为单位。如果值为正数,则表示位图是从上到下的;如果值为负数,则表示位图是从下到上的。
    WORD  biPlanes;//目标设备的位平面数,必须为1
    WORD  biBitCount;//每个像素的位数,可以是1、4、8、16、24或32。
    DWORD biCompression;//指定位图压缩类型。常用的有BI_RGB、BI_RLE8和BI_RLE4。
    DWORD biSizeImage;//位图数据的大小,以字节为单位。
    LONG  biXPelsPerMeter;//目标设备水平方向上每米像素数。
    LONG  biYPelsPerMeter;//目标设备垂直方向上每米像素数。
    DWORD biClrUsed;//位图实际使用的颜色表中的颜色数。
    DWORD biClrImportant;//对图像显示有重要影响的颜色索引数。
} BITMAPINFOHEADER, *LPBITMAPINFOHEADER, *PBITMAPINFOHEADER;

typedef struct tagRGBQUAD {
	BYTE    rgbBlue;
	BYTE    rgbGreen;
	BYTE    rgbRed;
	BYTE    rgbReserved;
} RGBQUAD;
typedef RGBQUAD * LPRGBQUAD;

*/

using namespace std;

#define M_SOF0  0xc0
#define M_DHT   0xc4
#define M_EOI   0xd9
#define M_SOS   0xda
#define M_DQT   0xdb
#define M_DRI   0xdd
#define M_APP0  0xe0

static int Zig_Zag[8][8] = { { 0, 1, 5, 6, 14, 15, 27, 28 },
{ 2, 4, 7, 13, 16, 26, 29, 42 },
{ 3, 8, 12, 17, 25, 30, 41, 43 },
{ 9, 11, 18, 24, 37, 40, 44, 53 },
{ 10, 19, 23, 32, 39, 45, 52, 54 },
{ 20, 22, 33, 38, 46, 51, 55, 60 },
{ 21, 34, 37, 47, 50, 56, 59, 61 },
{ 35, 36, 48, 49, 57, 58, 62, 63 }
};

#define W1 2841 /* 2048*sqrt(2)*cos(1*pi/16) */
#define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */
#define W3 2408 /* 2048*sqrt(2)*cos(3*pi/16) */
#define W5 1609 /* 2048*sqrt(2)*cos(5*pi/16) */
#define W6 1108 /* 2048*sqrt(2)*cos(6*pi/16) */
#define W7 565  /* 2048*sqrt(2)*cos(7*pi/16) */

//*************************************************************************************
typedef char CHAR;
typedef short SHORT;
typedef long LONG;

typedef unsigned long       DWORD;
typedef int                 BOOL;
typedef unsigned char       BYTE;
typedef unsigned short      WORD;

typedef int HFILE;
typedef CHAR *LPSTR, *PSTR;

#define FALSE 0
#define TRUE 1

//macro definitio
#define WIDTHBYTES(i)    ((i+31)/32*4)
#define PI 3.1415926535
#define FUNC_OK 0
#define FUNC_MEMORY_ERROR 1
#define FUNC_FILE_ERROR 2
#define FUNC_FORMAT_ERROR 3


class CBitmap : public SingleTon<CBitmap>
{
	friend class SingleTon<CBitmap>;

public:
	CBitmap(void);
	virtual ~CBitmap(void);

public:
	bool Jpeg2Bmp(const char* pszSrc, int nSrcLength, unsigned char** pszDst, unsigned int& nDstLength);

private:
	int  InitTag();
	void InitTable();
	int  Decode();
	int  DecodeMCUBlock();
	int  HufBlock(BYTE dchufindex, BYTE achufindex);
	int  DecodeElement();
	void IQtIZzMCUComponent(short flag);
	void IQtIZzBlock(short  *s, int * d, short flag);
	void GetYUV(short flag);
	void StoreBuffer();
	BYTE ReadByte();
	void Initialize_Fast_IDCT();
	void Fast_IDCT(int * block);
	void idctrow(int * blk);
	void idctcol(int * blk);
	string getModulePath();
	void BmpZoom(BITMAPFILEHEADER head, BITMAPINFOHEADER info, unsigned char** pszSrc, unsigned int nSrcLength, unsigned char** pszDst, unsigned int& nDstLength);

private:
	//global variable declaration
	char *            hImgData = NULL;
	DWORD              NumColors;
	DWORD              LineBytes;
	DWORD              ImgWidth = 0, ImgHeight = 0;
	char*             lpPtr;
	//
	//variables used in jpeg function
	short   SampRate_Y_H, SampRate_Y_V;
	short   SampRate_U_H, SampRate_U_V;
	short   SampRate_V_H, SampRate_V_V;
	short   H_YtoU, V_YtoU, H_YtoV, V_YtoV;
	short   Y_in_MCU, U_in_MCU, V_in_MCU;
	unsigned char   *lpJpegBuf;
	unsigned char   *lp;
	short   qt_table[3][64];
	short   comp_num;
	BYTE   comp_index[3];
	BYTE      YDcIndex, YAcIndex, UVDcIndex, UVAcIndex;
	BYTE   HufTabIndex;
	short      *YQtTable, *UQtTable, *VQtTable;
	short      code_pos_table[4][16], code_len_table[4][16];
	unsigned short code_value_table[4][256];
	unsigned short huf_max_value[4][16], huf_min_value[4][16];
	short   BitPos, CurByte;
	short   rrun, vvalue;
	short   MCUBuffer[10 * 64];
	int    QtZzMCUBuffer[10 * 64];
	short   BlockBuffer[64];
	short   ycoef, ucoef, vcoef;
	BOOL   IntervalFlag;
	short   interval = 0;
	int    Y[4 * 64], U[4 * 64], V[4 * 64];
	DWORD      sizei, sizej;
	short    restart;
};

#define Bitmap CBitmap::getInstance()

2、源文件:

#include "Jpeg2Bmp.h"

#pragma pack(1)
/* constants for the biCompression field */
#define BI_RGB        0L
#define BI_RLE8       1L
#define BI_RLE4       2L
#define BI_BITFIELDS  3L

static  long iclip[1024];
static  long *iclp;
BYTE   And[9] = { 0, 1, 3, 7, 0xf, 0x1f, 0x3f, 0x7f, 0xff };

#define OLD_BMP_PATH		"\\oldBmp.bmp"
#define NEW_BMP_PATH		"\\newBmp.bmp"
#define JPEG_2_BMP_PATH		"\\jpeg2bmp.bmp"

CBitmap::CBitmap(void)
{
}

CBitmap::~CBitmap(void)
{
}

void CBitmap::GetYUV(short flag)
{
	short H, VV;
	short i, j, k, h;
	int  *buf;
	int  *pQtZzMCU;
	buf = Y;
	pQtZzMCU = QtZzMCUBuffer;
	switch (flag) {
	case 0:
		H = SampRate_Y_H;
		VV = SampRate_Y_V;
		buf = Y;
		pQtZzMCU = QtZzMCUBuffer;
		break;
	case 1:
		H = SampRate_U_H;
		VV = SampRate_U_V;
		buf = U;
		pQtZzMCU = QtZzMCUBuffer + Y_in_MCU * 64;
		break;
	case 2:
		H = SampRate_V_H;
		VV = SampRate_V_V;
		buf = V;
		pQtZzMCU = QtZzMCUBuffer + (Y_in_MCU + U_in_MCU) * 64;
		break;
	}
	for (i = 0; i < VV; i++)
		for (j = 0; j < H; j++)
			for (k = 0; k < 8; k++)
				for (h = 0; h < 8; h++)
					buf[(i * 8 + k)*SampRate_Y_H * 8 + j * 8 + h] = *pQtZzMCU++;
}

void CBitmap::StoreBuffer()
{
	short i, j;
	unsigned char  *lpbmp;
	unsigned char R, G, B;
	int y, u, v, rr, gg, bb;

	for (i = 0; i < SampRate_Y_V * 8; i++) {
		if ((sizei + i) < ImgHeight) {
			lpbmp = ((unsigned char *)lpPtr + (DWORD)(ImgHeight - sizei - i - 1)*LineBytes + sizej * 3);
			for (j = 0; j < SampRate_Y_H * 8; j++) {
				if ((sizej + j) < ImgWidth) {
					y = Y[i * 8 * SampRate_Y_H + j];
					u = U[(i / V_YtoU) * 8 * SampRate_Y_H + j / H_YtoU];
					v = V[(i / V_YtoV) * 8 * SampRate_Y_H + j / H_YtoV];
					rr = ((y << 8) + 18 * u + 367 * v) >> 8;
					gg = ((y << 8) - 159 * u - 220 * v) >> 8;
					bb = ((y << 8) + 411 * u - 29 * v) >> 8;
					R = (unsigned char)rr;
					G = (unsigned char)gg;
					B = (unsigned char)bb;
					if (rr & 0xffffff00) if (rr > 255) R = 255; else if (rr < 0) R = 0;
					if (gg & 0xffffff00) if (gg > 255) G = 255; else if (gg < 0) G = 0;
					if (bb & 0xffffff00) if (bb > 255) B = 255; else if (bb < 0) B = 0;
					*lpbmp++ = B;
					*lpbmp++ = G;
					*lpbmp++ = R;


				}
				else  break;
			}
		}
		else break;
	}
}

void CBitmap::Fast_IDCT(int * block)
{
	short i;

	for (i = 0; i < 8; i++)
		idctrow(block + 8 * i);

	for (i = 0; i < 8; i++)
		idctcol(block + i);
}

string CBitmap::getModulePath()
{
	char szDir[2048] = { 0 };
	::GetModuleFileNameA(NULL, szDir, sizeof(szDir));

	string strResult = szDir;
	strResult = strResult.substr(0, strResult.find_last_of("\\"));
	return strResult;
}

void CBitmap::BmpZoom(BITMAPFILEHEADER head, BITMAPINFOHEADER info, unsigned char** pszSrc, unsigned int nSrcLength, unsigned char** pszDst, unsigned int& nDstLength)
{
	FILE* file = fopen(string(getModulePath() + OLD_BMP_PATH).c_str(), "wb");
	fwrite(*pszSrc, 1, nSrcLength, file);
	fclose(file);

	FILE *fpr1 = fopen(string(getModulePath() + OLD_BMP_PATH).c_str(), "rb");
	FILE *fpw2 = fopen(string(getModulePath() + NEW_BMP_PATH).c_str(), "wb");
	if (fpr1 == NULL || fpw2 == NULL)
	{
		printf("图片打开失败!\n");
		return;
	}
	//读取原照片的头信息
	fread(&head, sizeof(BITMAPFILEHEADER), 1, fpr1);
	fread(&info, sizeof(BITMAPINFOHEADER), 1, fpr1);

	unsigned int old_width = info.biWidth;//获取原图片的宽
	unsigned int old_height = info.biHeight;//获取原图片的高

	//获取原图片的位图数据
	unsigned char *src_data = new unsigned char[old_width*old_height * 3];
	fseek(fpr1, 54, SEEK_SET);
	fread(src_data, old_width*old_height * 3, 1, fpr1);
	fclose(fpr1);

	printf("原图片的宽:%d\n", old_width);
	printf("原图片的高:%d\n", old_height);

	//修改原照片的宽高
	unsigned int new_Width, new_Height;
	old_width > 480 ? new_Width = 480 : new_Width = old_width;
	old_height > 300 ? new_Height = 300 : new_Height = old_height;

	unsigned int newSize = new_Width * new_Height * 3;
	head.bfSize = newSize + 54;
	info.biWidth = new_Width;
	info.biHeight = new_Height;

	//将修改过的头信息写进新照片
	fwrite(&head, sizeof(BITMAPFILEHEADER), 1, fpw2);
	fwrite(&info, sizeof(BITMAPINFOHEADER), 1, fpw2);

	unsigned int i = 0, j = 0;
	unsigned long dwsrcX, dwsrcY;
	unsigned char *pucDest;
	unsigned char *pucSrc;
	unsigned char *dest_data = new unsigned char[newSize];
	for (i = 0; i < new_Height; i++)
	{
		dwsrcY = i * old_height / new_Height;
		pucDest = dest_data + i * new_Width * 3;
		pucSrc = src_data + dwsrcY * old_width * 3;
		for (j = 0; j < new_Width; j++)
		{
			dwsrcX = j * old_width / new_Width;
			memcpy(pucDest + j * 3, pucSrc + dwsrcX * 3, 3);//数据拷贝
		}
	}
	fseek(fpw2, 54, SEEK_SET);
	fwrite(dest_data, newSize, 1, fpw2);
	printf("生成新图片成功!\n");
	fclose(fpw2);

	nDstLength = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER) + newSize;
	*pszDst = new unsigned char[nDstLength];

	unsigned char* tmpData = *pszDst;
	memcpy_s(tmpData, sizeof(BITMAPFILEHEADER), &head, sizeof(BITMAPFILEHEADER));
	tmpData += sizeof(BITMAPFILEHEADER);
	memcpy_s(tmpData, sizeof(BITMAPINFOHEADER), &info, sizeof(BITMAPINFOHEADER));
	tmpData += sizeof(BITMAPINFOHEADER);
	memcpy_s(tmpData, newSize, dest_data, newSize);

	//释放堆空间
	delete[] dest_data;
	delete[] src_data;
	dest_data = NULL;
	src_data = NULL;

}

bool CBitmap::Jpeg2Bmp(const char* pszSrc, int nSrcLength, unsigned char** pszDst, unsigned int& nDstLength)
{
	FILE*      hfjpg;
	DWORD      ImgSize;
	DWORD      BufSize, JpegBufSize;
	FILE*      hfbmp;
	unsigned char * hJpegBuf;
	int        funcret;
	LPBITMAPINFOHEADER lpImgData;
	BITMAPFILEHEADER   bf;
	BITMAPINFOHEADER   bi;

	fopen_s(&hfjpg, pszSrc, "rb");

	//get jpg file length
	fseek(hfjpg, 0L, SEEK_END);
	JpegBufSize = ftell(hfjpg);
	//rewind to the beginning of the file
	fseek(hfjpg, 0L, SEEK_SET);

	hJpegBuf = new unsigned char[JpegBufSize];

	lpJpegBuf = hJpegBuf;
	fread(hJpegBuf, sizeof(char), JpegBufSize, hfjpg);
	fclose(hfjpg);

	InitTable();

	if ((funcret = InitTag()) != FUNC_OK)
	{
		free(hJpegBuf);
		return false;
	}
	//create new bitmapfileheader and bitmapinfoheader
	memset((char *)&bf, 0, sizeof(BITMAPFILEHEADER));
	memset((char *)&bi, 0, sizeof(BITMAPINFOHEADER));

	bi.biSize = (DWORD)sizeof(BITMAPINFOHEADER);
	bi.biWidth = (LONG)(ImgWidth);
	bi.biHeight = (LONG)(ImgHeight);
	bi.biPlanes = 1;
	bi.biBitCount = 24;
	bi.biClrUsed = 0;
	bi.biClrImportant = 0;
	bi.biCompression = BI_RGB;
	NumColors = 0;
	LineBytes = (DWORD)WIDTHBYTES(bi.biWidth*bi.biBitCount);
	ImgSize = (DWORD)LineBytes*bi.biHeight;
	bf.bfType = 0x4d42;
	int a = sizeof(BITMAPFILEHEADER);
	int b = sizeof(BITMAPINFOHEADER);
	//注意字节对齐问题!!!!!!!!!!!!!!!!!!!!!!!!1
	//如果没有#pragma pack(1),a是16~~~~~~~
	int c = NumColors * sizeof(RGBQUAD);

	bf.bfSize = sizeof(BITMAPFILEHEADER) + sizeof(BITMAPINFOHEADER) + NumColors * sizeof(RGBQUAD) + ImgSize;
	bf.bfOffBits = 54;
	BufSize = bf.bfSize - sizeof(BITMAPFILEHEADER);

	hImgData = new char[BufSize];
	lpImgData = (LPBITMAPINFOHEADER)hImgData;
	memcpy(lpImgData, (char *)&bi, sizeof(BITMAPINFOHEADER));
	lpPtr = (char *)lpImgData + sizeof(BITMAPINFOHEADER);

	if ((SampRate_Y_H == 0) || (SampRate_Y_V == 0))
	{
		free(hJpegBuf);
		free(hImgData);
		hImgData = NULL;
		return false;
	}

	funcret = Decode();
	if (funcret == FUNC_OK)
	{
		//生成bmp图片
		fopen_s(&hfbmp, string(getModulePath() + JPEG_2_BMP_PATH).c_str(), "wb");
		fwrite((LPSTR)&bf, sizeof(BITMAPFILEHEADER), 1, hfbmp);
		fwrite((LPSTR)lpImgData, sizeof(char), BufSize, hfbmp);

		{
			//bmp图片转为二进制
			unsigned int nSrcLength = BufSize + sizeof(BITMAPFILEHEADER);
			unsigned char *pszSrcZoom = new unsigned char[nSrcLength];
			unsigned char* tmpData = pszSrcZoom;
			memcpy_s(tmpData, sizeof(BITMAPFILEHEADER), &bf, sizeof(BITMAPFILEHEADER));
			tmpData += sizeof(BITMAPFILEHEADER);
			memcpy_s(tmpData, BufSize, lpImgData, BufSize);

			unsigned char* pszDstZoom;
			BmpZoom(bf, *lpImgData, &pszSrcZoom, nSrcLength, &pszDstZoom, nDstLength);
			*pszDst = new unsigned char[nDstLength];
			memcpy_s(*pszDst, nDstLength, pszDstZoom, nDstLength);

			delete[] pszDstZoom;
			pszDstZoom = NULL;
		}

		fclose(hfbmp);
		delete[] hJpegBuf;
		hJpegBuf = NULL;
		return true;
	}
	else
	{
		delete[] hJpegBuf;
		delete[] hImgData;
		hImgData = NULL;
		hJpegBuf = NULL;
		return false;
	}
}

int CBitmap::InitTag()
{
	BOOL finish = FALSE;
	BYTE id;
	short  llength;
	short  i, j, k;
	short  huftab1, huftab2;
	short  huftabindex;
	BYTE hf_table_index;
	BYTE qt_table_index;
	BYTE comnum;

	unsigned char  *lptemp;
	short  ccount;

	lp = lpJpegBuf + 2;

	while (!finish) {
		id = *(lp + 1);
		lp += 2;
		switch (id) {
		case M_APP0:
			llength = MAKEWORD(*(lp + 1), *lp);
			lp += llength;
			break;
		case M_DQT:
			llength = MAKEWORD(*(lp + 1), *lp);
			qt_table_index = (*(lp + 2)) & 0x0f;
			lptemp = lp + 3;
			if (llength < 80) {
				for (i = 0; i < 64; i++)
					qt_table[qt_table_index][i] = (short)*(lptemp++);
			}
			else {
				for (i = 0; i < 64; i++)
					qt_table[qt_table_index][i] = (short)*(lptemp++);
				qt_table_index = (*(lptemp++)) & 0x0f;
				for (i = 0; i < 64; i++)
					qt_table[qt_table_index][i] = (short)*(lptemp++);
			}
			lp += llength;
			break;
		case M_SOF0:
			llength = MAKEWORD(*(lp + 1), *lp);
			ImgHeight = MAKEWORD(*(lp + 4), *(lp + 3));
			ImgWidth = MAKEWORD(*(lp + 6), *(lp + 5));
			comp_num = *(lp + 7);
			if ((comp_num != 1) && (comp_num != 3))
				return FUNC_FORMAT_ERROR;
			if (comp_num == 3) {
				comp_index[0] = *(lp + 8);
				SampRate_Y_H = (*(lp + 9)) >> 4;
				SampRate_Y_V = (*(lp + 9)) & 0x0f;
				YQtTable = (short *)qt_table[*(lp + 10)];

				comp_index[1] = *(lp + 11);
				SampRate_U_H = (*(lp + 12)) >> 4;
				SampRate_U_V = (*(lp + 12)) & 0x0f;
				UQtTable = (short *)qt_table[*(lp + 13)];

				comp_index[2] = *(lp + 14);
				SampRate_V_H = (*(lp + 15)) >> 4;
				SampRate_V_V = (*(lp + 15)) & 0x0f;
				VQtTable = (short *)qt_table[*(lp + 16)];
			}
			else {
				comp_index[0] = *(lp + 8);
				SampRate_Y_H = (*(lp + 9)) >> 4;
				SampRate_Y_V = (*(lp + 9)) & 0x0f;
				YQtTable = (short *)qt_table[*(lp + 10)];

				comp_index[1] = *(lp + 8);
				SampRate_U_H = 1;
				SampRate_U_V = 1;
				UQtTable = (short *)qt_table[*(lp + 10)];

				comp_index[2] = *(lp + 8);
				SampRate_V_H = 1;
				SampRate_V_V = 1;
				VQtTable = (short *)qt_table[*(lp + 10)];
			}
			lp += llength;
			break;
		case M_DHT:
			llength = MAKEWORD(*(lp + 1), *lp);
			if (llength < 0xd0) {
				huftab1 = (short)(*(lp + 2)) >> 4;     //huftab1=0,1
				huftab2 = (short)(*(lp + 2)) & 0x0f;   //huftab2=0,1
				huftabindex = huftab1 * 2 + huftab2;
				lptemp = lp + 3;
				for (i = 0; i < 16; i++)
					code_len_table[huftabindex][i] = (short)(*(lptemp++));
				j = 0;
				for (i = 0; i < 16; i++)
					if (code_len_table[huftabindex][i] != 0) {
						k = 0;
						while (k < code_len_table[huftabindex][i]) {
							code_value_table[huftabindex][k + j] = (short)(*(lptemp++));
							k++;
						}
						j += k;
					}
				i = 0;
				while (code_len_table[huftabindex][i] == 0)
					i++;
				for (j = 0; j < i; j++) {
					huf_min_value[huftabindex][j] = 0;
					huf_max_value[huftabindex][j] = 0;
				}
				huf_min_value[huftabindex][i] = 0;
				huf_max_value[huftabindex][i] = code_len_table[huftabindex][i] - 1;
				for (j = i + 1; j < 16; j++) {
					huf_min_value[huftabindex][j] = (huf_max_value[huftabindex][j - 1] + 1) << 1;
					huf_max_value[huftabindex][j] = huf_min_value[huftabindex][j] + code_len_table[huftabindex][j] - 1;
				}
				code_pos_table[huftabindex][0] = 0;
				for (j = 1; j < 16; j++)
					code_pos_table[huftabindex][j] = code_len_table[huftabindex][j - 1] + code_pos_table[huftabindex][j - 1];
				lp += llength;
			}  //if
			else {
				hf_table_index = *(lp + 2);
				lp += 2;
				while (hf_table_index != 0xff) {
					huftab1 = (short)hf_table_index >> 4;     //huftab1=0,1
					huftab2 = (short)hf_table_index & 0x0f;   //huftab2=0,1
					huftabindex = huftab1 * 2 + huftab2;
					lptemp = lp + 1;
					ccount = 0;
					for (i = 0; i < 16; i++) {
						code_len_table[huftabindex][i] = (short)(*(lptemp++));
						ccount += code_len_table[huftabindex][i];
					}
					ccount += 17;
					j = 0;
					for (i = 0; i < 16; i++)
						if (code_len_table[huftabindex][i] != 0) {
							k = 0;
							while (k < code_len_table[huftabindex][i])
							{
								code_value_table[huftabindex][k + j] = (short)(*(lptemp++));
								k++;
							}
							j += k;
						}
					i = 0;
					while (code_len_table[huftabindex][i] == 0)
						i++;
					for (j = 0; j < i; j++) {
						huf_min_value[huftabindex][j] = 0;
						huf_max_value[huftabindex][j] = 0;
					}
					huf_min_value[huftabindex][i] = 0;
					huf_max_value[huftabindex][i] = code_len_table[huftabindex][i] - 1;
					for (j = i + 1; j < 16; j++) {
						huf_min_value[huftabindex][j] = (huf_max_value[huftabindex][j - 1] + 1) << 1;
						huf_max_value[huftabindex][j] = huf_min_value[huftabindex][j] + code_len_table[huftabindex][j] - 1;
					}
					code_pos_table[huftabindex][0] = 0;
					for (j = 1; j < 16; j++)
						code_pos_table[huftabindex][j] = code_len_table[huftabindex][j - 1] + code_pos_table[huftabindex][j - 1];
					lp += ccount;
					hf_table_index = *lp;
				}  //while
			}  //else
			break;
		case M_DRI:
			llength = MAKEWORD(*(lp + 1), *lp);
			restart = MAKEWORD(*(lp + 3), *(lp + 2));
			lp += llength;
			break;
		case M_SOS:
			llength = MAKEWORD(*(lp + 1), *lp);
			comnum = *(lp + 2);
			if (comnum != comp_num)
				return FUNC_FORMAT_ERROR;
			lptemp = lp + 3;
			for (i = 0; i < comp_num; i++) {
				if (*lptemp == comp_index[0]) {
					YDcIndex = (*(lptemp + 1)) >> 4;   //Y
					YAcIndex = ((*(lptemp + 1)) & 0x0f) + 2;
				}
				else {
					UVDcIndex = (*(lptemp + 1)) >> 4;   //U,V
					UVAcIndex = ((*(lptemp + 1)) & 0x0f) + 2;
				}
				lptemp += 2;
			}
			lp += llength;
			finish = TRUE;
			break;
		case M_EOI:
			return FUNC_FORMAT_ERROR;
			break;
		default:
			if ((id & 0xf0) != 0xd0) {
				llength = MAKEWORD(*(lp + 1), *lp);
				lp += llength;
			}
			else lp += 2;
			break;
		}  //switch
	} //while
	return FUNC_OK;
}

void CBitmap::InitTable()
{
	short i, j;
	sizei = sizej = 0;
	ImgWidth = ImgHeight = 0;
	rrun = vvalue = 0;
	BitPos = 0;
	CurByte = 0;
	IntervalFlag = FALSE;
	restart = 0;
	for (i = 0; i < 3; i++)
		for (j = 0; j < 64; j++)
			qt_table[i][j] = 0;
	comp_num = 0;
	HufTabIndex = 0;
	for (i = 0; i < 3; i++)
		comp_index[i] = 0;
	for (i = 0; i < 4; i++)
		for (j = 0; j < 16; j++) {
			code_len_table[i][j] = 0;
			code_pos_table[i][j] = 0;
			huf_max_value[i][j] = 0;
			huf_min_value[i][j] = 0;
		}
	for (i = 0; i < 4; i++)
		for (j = 0; j < 256; j++)
			code_value_table[i][j] = 0;

	for (i = 0; i < 10 * 64; i++) {
		MCUBuffer[i] = 0;
		QtZzMCUBuffer[i] = 0;
	}
	for (i = 0; i < 64; i++) {
		Y[i] = 0;
		U[i] = 0;
		V[i] = 0;
		BlockBuffer[i] = 0;
	}
	ycoef = ucoef = vcoef = 0;
}

int CBitmap::Decode()
{
	int funcret;

	Y_in_MCU = SampRate_Y_H * SampRate_Y_V;
	U_in_MCU = SampRate_U_H * SampRate_U_V;
	V_in_MCU = SampRate_V_H * SampRate_V_V;
	H_YtoU = SampRate_Y_H / SampRate_U_H;
	V_YtoU = SampRate_Y_V / SampRate_U_V;
	H_YtoV = SampRate_Y_H / SampRate_V_H;
	V_YtoV = SampRate_Y_V / SampRate_V_V;
	Initialize_Fast_IDCT();
	while ((funcret = DecodeMCUBlock()) == FUNC_OK) {
		interval++;
		if ((restart) && (interval % restart == 0))
			IntervalFlag = TRUE;
		else
			IntervalFlag = FALSE;
		IQtIZzMCUComponent(0);
		IQtIZzMCUComponent(1);
		IQtIZzMCUComponent(2);
		GetYUV(0);
		GetYUV(1);
		GetYUV(2);
		StoreBuffer();
		sizej += SampRate_Y_H * 8;
		if (sizej >= ImgWidth) {
			sizej = 0;
			sizei += SampRate_Y_V * 8;
		}
		if ((sizej == 0) && (sizei >= ImgHeight))
			break;
	}
	return funcret;
}

int CBitmap::DecodeMCUBlock()
{
	short *lpMCUBuffer;
	short i, j;
	int funcret;

	if (IntervalFlag) {
		lp += 2;
		ycoef = ucoef = vcoef = 0;
		BitPos = 0;
		CurByte = 0;
	}
	switch (comp_num) {
	case 3:
		lpMCUBuffer = MCUBuffer;
		for (i = 0; i < SampRate_Y_H*SampRate_Y_V; i++)  //Y
		{
			funcret = HufBlock(YDcIndex, YAcIndex);
			if (funcret != FUNC_OK)
				return funcret;
			BlockBuffer[0] = BlockBuffer[0] + ycoef;
			ycoef = BlockBuffer[0];
			for (j = 0; j < 64; j++)
				*lpMCUBuffer++ = BlockBuffer[j];
		}
		for (i = 0; i < SampRate_U_H*SampRate_U_V; i++)  //U
		{
			funcret = HufBlock(UVDcIndex, UVAcIndex);
			if (funcret != FUNC_OK)
				return funcret;
			BlockBuffer[0] = BlockBuffer[0] + ucoef;
			ucoef = BlockBuffer[0];
			for (j = 0; j < 64; j++)
				*lpMCUBuffer++ = BlockBuffer[j];
		}
		for (i = 0; i < SampRate_V_H*SampRate_V_V; i++)  //V
		{
			funcret = HufBlock(UVDcIndex, UVAcIndex);
			if (funcret != FUNC_OK)
				return funcret;
			BlockBuffer[0] = BlockBuffer[0] + vcoef;
			vcoef = BlockBuffer[0];
			for (j = 0; j < 64; j++)
				*lpMCUBuffer++ = BlockBuffer[j];
		}
		break;
	case 1:
		lpMCUBuffer = MCUBuffer;
		funcret = HufBlock(YDcIndex, YAcIndex);
		if (funcret != FUNC_OK)
			return funcret;
		BlockBuffer[0] = BlockBuffer[0] + ycoef;
		ycoef = BlockBuffer[0];
		for (j = 0; j < 64; j++)
			*lpMCUBuffer++ = BlockBuffer[j];
		for (i = 0; i < 128; i++)
			*lpMCUBuffer++ = 0;
		break;
	default:
		return FUNC_FORMAT_ERROR;
	}
	return FUNC_OK;
}

int CBitmap::HufBlock(BYTE dchufindex, BYTE achufindex)
{
	short count = 0;
	short i;
	int funcret;

	//dc
	HufTabIndex = dchufindex;
	funcret = DecodeElement();
	if (funcret != FUNC_OK)
		return funcret;

	BlockBuffer[count++] = vvalue;
	//ac
	HufTabIndex = achufindex;
	while (count < 64) {
		funcret = DecodeElement();
		if (funcret != FUNC_OK)
			return funcret;
		if ((rrun == 0) && (vvalue == 0)) {
			for (i = count; i < 64; i++)
				BlockBuffer[i] = 0;
			count = 64;
		}
		else {
			for (i = 0; i < rrun; i++)
				BlockBuffer[count++] = 0;
			BlockBuffer[count++] = vvalue;
		}
	}
	return FUNC_OK;
}

int CBitmap::DecodeElement()
{
	int thiscode, tempcode;
	unsigned short temp, valueex;
	short codelen;
	BYTE hufexbyte, runsize, tempsize, sign;
	BYTE newbyte, lastbyte;

	if (BitPos >= 1) {
		BitPos--;
		thiscode = (BYTE)CurByte >> BitPos;
		CurByte = CurByte & And[BitPos];
	}
	else {
		lastbyte = ReadByte();
		BitPos--;
		newbyte = CurByte & And[BitPos];
		thiscode = lastbyte >> 7;
		CurByte = newbyte;
	}
	codelen = 1;
	while ((thiscode < huf_min_value[HufTabIndex][codelen - 1]) ||
		(code_len_table[HufTabIndex][codelen - 1] == 0) ||
		(thiscode > huf_max_value[HufTabIndex][codelen - 1]))
	{
		if (BitPos >= 1) {
			BitPos--;
			tempcode = (BYTE)CurByte >> BitPos;
			CurByte = CurByte & And[BitPos];
		}
		else {
			lastbyte = ReadByte();
			BitPos--;
			newbyte = CurByte & And[BitPos];
			tempcode = (BYTE)lastbyte >> 7;
			CurByte = newbyte;
		}
		thiscode = (thiscode << 1) + tempcode;
		codelen++;
		if (codelen > 16)
			return FUNC_FORMAT_ERROR;
	}  //while
	temp = thiscode - huf_min_value[HufTabIndex][codelen - 1] + code_pos_table[HufTabIndex][codelen - 1];
	hufexbyte = (BYTE)code_value_table[HufTabIndex][temp];
	rrun = (short)(hufexbyte >> 4);
	runsize = hufexbyte & 0x0f;
	if (runsize == 0) {
		vvalue = 0;
		return FUNC_OK;
	}
	tempsize = runsize;
	if (BitPos >= runsize) {
		BitPos -= runsize;
		valueex = (BYTE)CurByte >> BitPos;
		CurByte = CurByte & And[BitPos];
	}
	else {
		valueex = CurByte;
		tempsize -= BitPos;
		while (tempsize > 8) {
			lastbyte = ReadByte();
			valueex = (valueex << 8) + (BYTE)lastbyte;
			tempsize -= 8;
		}  //while
		lastbyte = ReadByte();
		BitPos -= tempsize;
		valueex = (valueex << tempsize) + (lastbyte >> BitPos);
		CurByte = lastbyte & And[BitPos];
	}  //else
	sign = valueex >> (runsize - 1);
	if (sign)
		vvalue = valueex;
	else {
		valueex = valueex ^ 0xffff;
		temp = 0xffff << runsize;
		vvalue = -(short)(valueex^temp);
	}
	return FUNC_OK;
}

void CBitmap::IQtIZzMCUComponent(short flag)
{
	short H, VV;
	short i, j;
	int *pQtZzMCUBuffer;
	short  *pMCUBuffer;
	pMCUBuffer = MCUBuffer;
	pQtZzMCUBuffer = QtZzMCUBuffer;
	switch (flag) {
	case 0:
		H = SampRate_Y_H;
		VV = SampRate_Y_V;
		pMCUBuffer = MCUBuffer;
		pQtZzMCUBuffer = QtZzMCUBuffer;
		break;
	case 1:
		H = SampRate_U_H;
		VV = SampRate_U_V;
		pMCUBuffer = MCUBuffer + Y_in_MCU * 64;
		pQtZzMCUBuffer = QtZzMCUBuffer + Y_in_MCU * 64;
		break;
	case 2:
		H = SampRate_V_H;
		VV = SampRate_V_V;
		pMCUBuffer = MCUBuffer + (Y_in_MCU + U_in_MCU) * 64;
		pQtZzMCUBuffer = QtZzMCUBuffer + (Y_in_MCU + U_in_MCU) * 64;
		break;
	}
	for (i = 0; i < VV; i++)
		for (j = 0; j < H; j++)
			IQtIZzBlock(pMCUBuffer + (i*H + j) * 64, pQtZzMCUBuffer + (i*H + j) * 64, flag);
}

void CBitmap::IQtIZzBlock(short  *s, int * d, short flag)
{
	short i, j;
	short tag;
	short *pQt;
	int buffer2[8][8];
	int *buffer1;
	short offset;
	pQt = YQtTable;
	switch (flag) {
	case 0:
		pQt = YQtTable;
		offset = 128;
		break;
	case 1:
		pQt = UQtTable;
		offset = 0;
		break;
	case 2:
		pQt = VQtTable;
		offset = 0;
		break;
	}

	for (i = 0; i < 8; i++)
		for (j = 0; j < 8; j++) {
			tag = Zig_Zag[i][j];
			buffer2[i][j] = (int)s[tag] * (int)pQt[tag];
		}
	buffer1 = (int *)buffer2;
	Fast_IDCT(buffer1);
	for (i = 0; i < 8; i++)
		for (j = 0; j < 8; j++)
			d[i * 8 + j] = buffer2[i][j] + offset;
}

BYTE CBitmap::ReadByte()
{
	BYTE  i;

	i = *(lp++);
	if (i == 0xff)
		lp++;
	BitPos = 8;
	CurByte = i;
	return i;
}

void CBitmap::Initialize_Fast_IDCT()
{
	short i;

	iclp = iclip + 512;
	for (i = -512; i < 512; i++)
		iclp[i] = (i < -256) ? -256 : ((i > 255) ? 255 : i);
}

void CBitmap::idctrow(int * blk)
{
	int x0, x1, x2, x3, x4, x5, x6, x7, x8;
	//intcut
	if (!((x1 = blk[4] << 11) | (x2 = blk[6]) | (x3 = blk[2]) |
		(x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3])))
	{
		blk[0] = blk[1] = blk[2] = blk[3] = blk[4] = blk[5] = blk[6] = blk[7] = blk[0] << 3;
		return;
	}
	x0 = (blk[0] << 11) + 128; // for proper rounding in the fourth stage 
	//first stage
	x8 = W7 * (x4 + x5);
	x4 = x8 + (W1 - W7)*x4;
	x5 = x8 - (W1 + W7)*x5;
	x8 = W3 * (x6 + x7);
	x6 = x8 - (W3 - W5)*x6;
	x7 = x8 - (W3 + W5)*x7;
	//second stage
	x8 = x0 + x1;
	x0 -= x1;
	x1 = W6 * (x3 + x2);
	x2 = x1 - (W2 + W6)*x2;
	x3 = x1 + (W2 - W6)*x3;
	x1 = x4 + x6;
	x4 -= x6;
	x6 = x5 + x7;
	x5 -= x7;
	//third stage
	x7 = x8 + x3;
	x8 -= x3;
	x3 = x0 + x2;
	x0 -= x2;
	x2 = (181 * (x4 + x5) + 128) >> 8;
	x4 = (181 * (x4 - x5) + 128) >> 8;
	//fourth stage
	blk[0] = (x7 + x1) >> 8;
	blk[1] = (x3 + x2) >> 8;
	blk[2] = (x0 + x4) >> 8;
	blk[3] = (x8 + x6) >> 8;
	blk[4] = (x8 - x6) >> 8;
	blk[5] = (x0 - x4) >> 8;
	blk[6] = (x3 - x2) >> 8;
	blk[7] = (x7 - x1) >> 8;
}
//
void CBitmap::idctcol(int * blk)
{
	int x0, x1, x2, x3, x4, x5, x6, x7, x8;
	//intcut
	if (!((x1 = (blk[8 * 4] << 8)) | (x2 = blk[8 * 6]) | (x3 = blk[8 * 2]) |
		(x4 = blk[8 * 1]) | (x5 = blk[8 * 7]) | (x6 = blk[8 * 5]) | (x7 = blk[8 * 3])))
	{
		blk[8 * 0] = blk[8 * 1] = blk[8 * 2] = blk[8 * 3] = blk[8 * 4] = blk[8 * 5]
			= blk[8 * 6] = blk[8 * 7] = iclp[(blk[8 * 0] + 32) >> 6];
		return;
	}
	x0 = (blk[8 * 0] << 8) + 8192;
	//first stage
	x8 = W7 * (x4 + x5) + 4;
	x4 = (x8 + (W1 - W7)*x4) >> 3;
	x5 = (x8 - (W1 + W7)*x5) >> 3;
	x8 = W3 * (x6 + x7) + 4;
	x6 = (x8 - (W3 - W5)*x6) >> 3;
	x7 = (x8 - (W3 + W5)*x7) >> 3;
	//second stage
	x8 = x0 + x1;
	x0 -= x1;
	x1 = W6 * (x3 + x2) + 4;
	x2 = (x1 - (W2 + W6)*x2) >> 3;
	x3 = (x1 + (W2 - W6)*x3) >> 3;
	x1 = x4 + x6;
	x4 -= x6;
	x6 = x5 + x7;
	x5 -= x7;
	//third stage
	x7 = x8 + x3;
	x8 -= x3;
	x3 = x0 + x2;
	x0 -= x2;
	x2 = (181 * (x4 + x5) + 128) >> 8;
	x4 = (181 * (x4 - x5) + 128) >> 8;
	//fourth stage
	blk[8 * 0] = iclp[(x7 + x1) >> 14];
	blk[8 * 1] = iclp[(x3 + x2) >> 14];
	blk[8 * 2] = iclp[(x0 + x4) >> 14];
	blk[8 * 3] = iclp[(x8 + x6) >> 14];
	blk[8 * 4] = iclp[(x8 - x6) >> 14];
	blk[8 * 5] = iclp[(x0 - x4) >> 14];
	blk[8 * 6] = iclp[(x3 - x2) >> 14];
	blk[8 * 7] = iclp[(x7 - x1) >> 14];
}
举报

相关推荐

0 条评论