最近要统计项目组的sql,分析一下性能和sql规范,写了一个小方法,在这记录一下吧,后续还完善。
在druid的web监控点击登记日志。
页面操作就不在这配图说明了
在log文件中,将sqlList找出来
在.log的日志文件中将sqlList后面的json内容通过sed截取出来,输出到xx.txt文件中
find ./* -name '*.log'|xargs grep 'sqlList'|sed -r 's/.*sqlList\"\:(.*)\}\r\n/\1/g' >xx.txt
标题通过java代码解析
解析json文件,按需求输出几个文件。
这里的原始文件路径没做灵活,在INPUT_DIR目录下,还有一层目录(如:不同的module),然后是文件xx.txt
package com.demo;
import com.alibaba.fastjson.JSON;
import com.demo.util.ExportExcel;
import org.thymeleaf.util.StringUtils;
import java.io.*;
import java.math.BigDecimal;
import java.math.RoundingMode;
import java.util.*;
import java.util.stream.Collectors;
public class ParseDruidJson {
/**
* 原始解析结果
* key - inputfile name
*/
private static Map<File, List<DruidLogBean>> beansMap = new HashMap<>();
/**
* 去重后的sql
* key - inputfile name
*/
private static Map<File, Set<String>> distinctSqlMap = new HashMap<>();
/**
* 输入文件的文件夹,输出文件在输入文件的名字后面加上parse
*/
private static final String INPUT_DIR = "C:\\xx\\TEMP\\xx\\sqlFile";
/**
* 一条输出字符串的分隔符
*/
private static final String SPLIT_STR = "#";
public static void main(String[] args) throws Exception {
File inputDirFile = new File(INPUT_DIR);
if(inputDirFile.isFile()){
return;
}
// 遍历文件夹下所有文件,解析
for(File inputFileSec : inputDirFile.listFiles()){
if(inputFileSec.isFile()){
continue;
}
for(File inputFile: inputFileSec.listFiles()){
// 原始文件不能有“_"
if(inputFile.getName().contains("_")){
continue;
}
BufferedReader reader = new BufferedReader(new FileReader(inputFile));
String sqlListLine = reader.readLine();
List<DruidLogBean> beans = new ArrayList<>();
Set<String> distinctSql = new HashSet<>();
beansMap.put(inputFile, beans);
distinctSqlMap.put(inputFile, distinctSql);
while(!StringUtils.isEmpty(sqlListLine)){
beans.addAll(JSON.parseArray(sqlListLine, DruidLogBean.class));
sqlListLine= reader.readLine();
}
// 遍历每条sql对象
for (DruidLogBean bean : beans) {
// 暂不考虑sql中有写死值得情况,去重的sql,都转成大写
distinctSql.add(bean.getSql().toUpperCase(Locale.ROOT));
}
System.out.println(inputFile.getAbsolutePath() + "文件有sql数量:" + beans.size());
}
}
printAllSql();
printSqlDistinct();
printSqlSortByAvgTimeDesc();
printSqlWithoutWhere();
}
/**
* 获取输出文件
* 输出文件是在原来文件加_$outSubfix,如果文件存在,删除后重建
* @param inputFile
* @param outSubfix
* @param expandedName 拓展名,如:.xls
* @return
* @throws IOException
*/
private static File getOutputFile(File inputFile, String outSubfix, String expandedName) throws IOException {
String fileName = inputFile.getAbsolutePath();
int pointIndex = fileName.lastIndexOf(".");
String outputFilename = null;
if(StringUtils.isEmpty(expandedName)){
outputFilename = fileName.substring(0, pointIndex) + "_" + outSubfix + fileName.substring(pointIndex);
}else{
outputFilename = fileName.substring(0, pointIndex) + "_" + outSubfix + expandedName;
}
File outputFile = new File(outputFilename);
if(outputFile.exists()){
outputFile.delete();
outputFile.createNewFile();
}
return outputFile;
}
/**
* 打印所有的sql
* sql#ExecuteMillisTotal#ExecuteCount#avgExecuteMillis
* @throws IOException
*/
private static void printAllSql() throws Exception {
System.out.println("---------printAllSql------------");
for(Map.Entry<File, List<DruidLogBean>> entity : beansMap.entrySet()){
Map<String, List<String>> classifyMap = new HashMap();
File outputFile = getOutputFile(entity.getKey(), "all", ".xls");
for(DruidLogBean bean : entity.getValue()){
String printSql = bean.getSql() + SPLIT_STR + bean.getExecuteMillisTotal() + SPLIT_STR + bean.getExecuteCount() + SPLIT_STR + getExecuteAVGTime(bean.getExecuteMillisTotal(), bean.getExecuteCount());
classfiyByDMLType(classifyMap, printSql);
}
List<String> printSql = new ArrayList<>();
for(Map.Entry<String, List<String>> entrySql: classifyMap.entrySet()){
for(String sql : entrySql.getValue()){
printSql.add(sql);
}
}
String[] rowName = new String[]{"SQL", "ExecuteMillisTotal(ms)", "ExecuteCount", "ExecuteAVGTime(ms)"};
printToExcel(outputFile.getAbsolutePath(), null, rowName, printSql);
// printToTxt(outputFile.getAbsolutePath(), printSql);
System.out.println("输出文件:" + outputFile.getAbsolutePath());
}
}
/**
* 输出成excel
* @param fileName
* @param tableName
* @param sqlList
* @throws Exception
*/
private static void printToExcel(String fileName, String tableName, String[] rowName,List<String> sqlList) throws Exception {
if(fileName.endsWith(".txt")){
fileName.replace(".txt", ".xls");
}
List<Object[]> rows = new ArrayList<>();
for(String sql : sqlList){
rows.add(sql.split(SPLIT_STR));
}
if(StringUtils.isEmpty(tableName)){
tableName = "result";
}
FileOutputStream exportOutputStream = new FileOutputStream(fileName);
if(rows != null && rows.size() > 0){
ExportExcel exportExcel = new ExportExcel(tableName, rowName, rows);
exportExcel.export(exportOutputStream);
}
exportOutputStream.flush();
exportOutputStream.close();
}
/**
* 输出成txt
* @param fileName
* @param sqlList
* @throws IOException
*/
private static void printToTxt(String fileName, List<String> sqlList) throws IOException {
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName,true)));
for(String sql : sqlList){
out.write(sql);
out.newLine();
}
out.flush();
out.close();
}
/**
* 按照sql的DML类型进行分类存放
* @param classfiedMap
* @param sql
*/
private static void classfiyByDMLType(Map<String, List<String>> classfiedMap, String sql){
String dMLType = sql.substring(0, sql.indexOf(" ")).toLowerCase(Locale.ROOT);
List<String> dMLList = classfiedMap.get(dMLType);
if(dMLList == null){
dMLList = new ArrayList<>();
classfiedMap.put(dMLType, dMLList);
}
dMLList.add(sql);
}
/**
* 按照平均执行时间倒序排序
*/
private static void printSqlSortByAvgTimeDesc() throws IOException{
System.out.println("---------printSqlSortByAvgTimeDesc------------");
for(Map.Entry<File, List<DruidLogBean>> entity : beansMap.entrySet()){
File outputFile = getOutputFile(entity.getKey(), "sort", null);
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(outputFile,true)));
List<Map<String, String>> sortList = new ArrayList<>();
for(DruidLogBean bean : entity.getValue()){
Map<String, String> beanMap = new HashMap<>();
beanMap.put("avgTime", getExecuteAVGTime(bean.getExecuteMillisTotal(), bean.getExecuteCount()));
beanMap.put("sql", bean.getSql());
sortList.add(beanMap);
}
List<Map<String, String>> sortListNew = sortList.stream().sorted((s2, s1) ->(new BigDecimal(s1.get("avgTime"))).compareTo(new BigDecimal(s2.get("avgTime")))).collect(Collectors.toList());
for(Map<String, String> beanMap : sortListNew){
out.write(beanMap.get("sql") + SPLIT_STR + beanMap.get("avgTime"));
out.newLine();
}
out.flush();
out.close();
System.out.println("输出文件:" + outputFile.getAbsolutePath());
}
}
/**
* 获取平均执行时间
* @param totalTime
* @param count
* @return
*/
private static String getExecuteAVGTime(String totalTime, String count){
BigDecimal avgTime = (new BigDecimal(totalTime)).divide(new BigDecimal(count), 2, RoundingMode.HALF_UP);
// if(avgTime.compareTo(BigDecimal.ZERO) <= 0){
// System.out.println(totalTime);
// }
return avgTime.toString();
}
/**
* 输出没有where条件的查询sql
* @throws IOException
*/
private static void printSqlWithoutWhere() throws IOException {
System.out.println("---------printSqlWithoutWhere------------");
for(Map.Entry<File, Set<String>> entity : distinctSqlMap.entrySet()){
File outputFile = getOutputFile(entity.getKey(), "withoutWhere", null);
BufferedWriter out = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(outputFile,true)));
Set<String> sqlSet = entity.getValue();
for(String sql : sqlSet){
if(isWithoutWhere(sql)){
out.write(sql);
out.newLine();
}
}
out.flush();
out.close();
System.out.println("输出文件:" + outputFile.getAbsolutePath());
}
}
/**
* 判断sql是否有where
* @param sql
* @return
*/
private static Boolean isWithoutWhere(String sql){
sql = sql.toLowerCase(Locale.ROOT);
if(!sql.startsWith("select")){
return false;
}
if(sql.contains("where")){
return false;
}
return true;
}
/**
* 输出去重后的sql
*/
private static void printSqlDistinct() throws Exception {
System.out.println("---------printSqlDistinct------------");
for(Map.Entry<File, Set<String>> entity : distinctSqlMap.entrySet()){
File outputFile = getOutputFile(entity.getKey(), "distinct", ".xls");
Set<String> sqlSet = entity.getValue();
Map<String, List<String>> classifyMap = new HashMap();
for(String sql : sqlSet){
classfiyByDMLType(classifyMap, sql);
}
List<String> printSql = new ArrayList<>();
for(Map.Entry<String, List<String>> entrySql: classifyMap.entrySet()){
for(String sql : entrySql.getValue()){
printSql.add(sql);
}
}
String[] rowName = new String[]{"SQL"};
printToExcel(outputFile.getAbsolutePath(), null, rowName, printSql);
// printToTxt(outputFile.getAbsolutePath(), printSql);
System.out.println("输出文件:" + outputFile.getAbsolutePath());
}
}
}
支持输出到txt和excel
输出到excel防范是网上粘贴过来的一段,就不在这parse了
printAllSql 输出所有的sql
printSqlSortByAvgTimeDesc 按照sql平均执行时间倒序输出
printSqlWithoutWhere 输出没有where条件的select语句的
printSqlDistinct 输出去重后的sql
pom.xml的依赖就一股脑粘贴过来了
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.47</version>
</dependency>
<dependency>
<groupId>org.apache.poi</groupId>
<artifactId>poi</artifactId>
<version>3.11</version>
</dependency>
<dependency>
<groupId>commons-io</groupId>
<artifactId>commons-io</artifactId>
<version>2.6</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.session</groupId>
<artifactId>spring-session-core</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>