1.导入包
2.下载数据
3.以数据形式显示数据
4.以图片形式显示数据
导入需要的包:
import torchvision
import torchvision.transforms as transformers
import matplotlib.pyplot as plt
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' # 在pytharm中 防止出现图片闪退出错
下载FashionMNIST数据(训练数据集fashion_train和测试数据集fashion_test):
fashion_train = torchvision.datasets.FashionMNIST(root=r'G:\D2L\fashion_mnist',train=True,download=True,transform=transformers.ToTensor())
fashion_test = torchvision.datasets.FashionMNIST(root=r'G:\D2L\fashion_mnist',train=False,download=True,transform=transformers.ToTensor())
下载的数据保存在G:\D2L\fashion_mnist文件夹下,train=True:下载训练数据;Train=False:下载测试数据。transform=transformers.ToTensor():将数据转换为tensor格式。
feature,label = fashion_test[0]
feature获得测试数据中第一张图片的数据,label获得其对应的标签号。
print(feature.shape,label,feature)
torch.Size([1, 28, 28]) 3 tensor([[[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.1373, 0.2980, 0.2824, 0.0000, 0.0000, 0.0000, 0.0000,
0.3176, 0.2980, 0.0078, 0.0706, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.3843, 0.8118, 0.9412, 0.7137, 0.3765, 0.5098, 0.5412, 0.4235,
0.5882, 0.7490, 0.7569, 0.6745, 0.3059, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.2314,
0.6118, 0.5882, 0.8745, 0.7608, 0.8078, 0.5294, 0.5098, 0.2588,
0.0392, 0.3529, 0.6000, 0.7020, 0.8941, 0.1804, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.4471,
0.6314, 0.6118, 0.8314, 0.6980, 0.7843, 0.7255, 0.2941, 0.5098,
0.7529, 0.2471, 0.4549, 0.4314, 0.6392, 0.2275, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.4824, 1.0000, 0.8000, 0.6157, 0.3725, 0.5529, 0.1725, 0.2510,
0.3529, 0.1922, 0.4784, 0.0588, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0824, 0.8588, 0.7373, 0.6157, 0.6353, 0.2549, 0.4667,
0.2471, 0.4706, 0.2431, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.6314, 0.6549, 0.8078, 0.7961, 0.3020, 0.2471,
0.2275, 0.4314, 0.2078, 0.0000, 0.0039, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.4314, 0.3176, 0.7098, 0.7569, 0.6353, 0.2784,
0.1412, 0.2745, 0.2196, 0.0000, 0.0039, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039,
0.0000, 0.0000, 0.4078, 0.3373, 0.8784, 0.8196, 0.7255, 0.4118,
0.1294, 0.5569, 0.1451, 0.0000, 0.0078, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039,
0.0000, 0.0000, 0.4275, 0.3098, 0.8549, 0.0706, 0.3725, 0.7098,
0.1333, 0.7255, 0.2196, 0.0000, 0.0039, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0314, 0.4471, 0.4196, 0.3843, 0.2510, 0.2431, 0.1725,
0.5686, 0.8000, 0.3529, 0.0000, 0.0078, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0392, 0.4275, 0.4510, 0.4314, 0.4510, 0.1333, 0.4314,
0.8039, 0.8039, 0.3373, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.2745, 0.7255, 0.5686, 0.5451, 0.5647, 0.1843, 0.9412,
0.7843, 0.7176, 0.5569, 0.0078, 0.0000, 0.0078, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.4039, 0.6157, 0.4275, 0.2118, 0.5843, 1.0000, 0.7608,
0.2157, 0.5882, 0.7804, 0.1647, 0.0000, 0.0196, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.2980, 0.2863, 0.5922, 0.7686, 0.9294, 0.8706, 0.2353,
0.4667, 0.4235, 0.4471, 0.1137, 0.0000, 0.0118, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.3216, 0.2510, 0.4706, 0.6118, 0.4863, 0.9843, 0.5333,
0.1412, 0.3216, 0.6706, 0.0431, 0.0000, 0.0039, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0549, 0.2980, 0.1490, 0.0902, 0.1529, 0.8824, 0.8039,
0.5765, 0.6667, 0.9765, 0.0078, 0.0000, 0.0078, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039,
0.0000, 0.3255, 0.6196, 0.1176, 0.1608, 0.2627, 0.9333, 0.8706,
0.8392, 0.8588, 0.7059, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0118,
0.0000, 0.4627, 0.8275, 0.2745, 0.6902, 0.2471, 0.7490, 0.0314,
0.5529, 0.8431, 0.4941, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0118,
0.0000, 0.2235, 0.9176, 0.6784, 0.5686, 0.4824, 0.3882, 0.5020,
0.3569, 0.8275, 0.4784, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0078,
0.0000, 0.1059, 0.8471, 0.6510, 0.3255, 0.2392, 0.6588, 0.5725,
0.4706, 0.5804, 0.4549, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0078,
0.0000, 0.0118, 0.8627, 0.7020, 0.3569, 0.3569, 0.6471, 0.6588,
0.6314, 0.6235, 0.3020, 0.0000, 0.0078, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.6784, 0.5882, 0.8039, 0.8863, 0.6627, 0.7843,
0.7412, 0.6941, 0.1882, 0.0000, 0.0078, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.6706, 0.7882, 0.9294, 0.7176, 0.5333, 0.7725,
0.7373, 0.4353, 0.1373, 0.0000, 0.0078, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039,
0.0000, 0.0000, 0.6000, 0.8196, 0.9020, 0.7843, 0.7529, 0.4902,
0.3686, 0.1216, 0.0667, 0.0000, 0.0078, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.7137, 0.9216, 0.8667, 0.7843, 0.8549, 0.5765,
0.4627, 0.7098, 0.0000, 0.0000, 0.0039, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.5961, 0.8392, 0.9373, 0.9020, 0.8549, 0.7647,
0.5843, 0.6980, 0.0118, 0.0000, 0.0039, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0039,
0.0000, 0.0000, 0.0000, 0.1294, 0.5255, 0.5765, 0.4824, 0.3765,
0.3686, 0.1255, 0.0000, 0.0039, 0.0000, 0.0000, 0.0000, 0.0000,
0.0000, 0.0000, 0.0000, 0.0000]]])
将此数据的图片显示出来:
fig = plt.figure(num=100,figsize=(5,5),facecolor='yellow',edgecolor="red",frameon=True)# 定义窗口信息,画板编号名为100 窗口大小5*5英寸,背景颜色......
ax = fig.add_subplot(1,1,1)#将窗口切分成1*1个子图,返回子图中第1个子图(举一反三如下注解说明:)
# ax = fig.add_subplot(3,2,2)#将窗口切分成3*2个子图(6个子图),返回子图中第2个子图
ax.imshow(feature.reshape(28,28).numpy())#在第一个子图中显示数据(feature数据转换为二维数据的numpy格式)
plt.show()
图片果如下: