0
点赞
收藏
分享

微信扫一扫

GCD BZOJ2818 [省队互测] 数学

我是芄兰 2022-05-27 阅读 18

题目描述

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.

输入输出格式

输入格式:

一个整数N

输出格式:

答案

输入输出样例

输入样例#1:

复制

4

输出样例#1: 复制

4

说明

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

来源:bzoj2818

本题数据为洛谷自造数据,使用​​CYaRon​​耗时5分钟完成数据制作。

GCD BZOJ2818 [省队互测] 数学_#include

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//#include
//#pragma GCC optimize(2)
using namespace std;
#define maxn 2000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair pii;

inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
}


ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; }



/*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/

bool vis[10000002];
int phi[10000002];
ll sum[10000002 >> 1];
int pri[10000002];
int tot;
int N;
void init() {
phi[1] = 1;
for (int i = 2; i <= 10000000; i++) {
if (!vis[i]) {
pri[++tot] = i; phi[i] = i - 1;
}
for (int j = 1; j <= tot && i*pri[j] <= 10000000; j++) {
vis[i*pri[j]] = true;
phi[i*pri[j]] = phi[i] * phi[pri[j]];
if (i%pri[j] == 0) {
phi[i*pri[j]] = phi[i] * pri[j];
break;
}
}
}
}

int main()
{
// ios::sync_with_stdio(0);
N = rd();
init();
for (int i = 1; i <= 10000000 / 2; i++)sum[i] = 1ll*sum[i - 1] + 1ll*phi[i];
ll ans = 0;
for (int i = 1; i <= tot; i++) {
if (pri[i] > N)break;
ans += 1ll * 2 * sum[N / pri[i]] - 1;
}
cout << (ll)ans << endl;
return 0;
}

 

EPFL - Fighting

举报

相关推荐

0 条评论