0
点赞
收藏
分享

微信扫一扫

bzoj 2818 Gcd 【欧拉函数】

盖码范 2023-03-03 阅读 82


问题:求gcd(x,y)==质数, 1<=x,y<=n的有多少对?

做这题的时候,懂得了一个非常重要的转化:求(x, y) = k, 1 <= x, y <= n的对数等于求(x, y) = 1, 1 <= x, y <= n/k的对数!所以,枚举每个质数p,然后求(x, y) = 1, 1 <= x, y <= n/p的个数。

(x, y) = 1 的个数如何求呢?欧拉函数!


#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <ctype.h>
#include <time.h>
#include <queue>
#include <iterator>

using namespace std;

const int MAXN = 1000000;
int n;

int main()
{
while (scanf("%d", &n) != EOF)
{
bool com[MAXN];
int primes = 0, prime[MAXN], phi[MAXN];

phi[1] = 1;
for (int i = 2; i <= n; ++i)
{
if (!com[i])
{
prime[primes++] = i;
phi[i] = i - 1;
}
for (int j = 0; j < primes && i*prime[j] <= n; ++j)
{
com[i*prime[j]] = true;
if (i % prime[j])
phi[i*prime[j]] = phi[i] * (prime[j] - 1);
else
{
phi[i*prime[j]] = phi[i] * prime[j]; break;
}
}
}

for (int i = 2; i <= n; i++)
phi[i] = phi[i] + phi[i-1];
long long ans = 0;

for (int i = 0; i < primes; i++)
ans += phi[n/prime[i]] * 2 -1;
printf("%lld\n",ans);
}
return 0;
}




举报

相关推荐

0 条评论