0
点赞
收藏
分享

微信扫一扫

【Node.js快速部署opencv项目】图像分类与目标检测

静鸡鸡的JC 2024-06-14 阅读 4
import cv2
import numpy as np

img = cv2.imread("F:\\mytupian\\xihuduanqiao.jpg")  # 低反光
cv2.imshow('image', img)
# =============================================================================
# 图像分块
# =============================================================================
dst = np.zeros(img.shape, img.dtype)
ratio = 2    #图像边长缩小比率是2,也就是一张图片被分割成四份
height, width = img.shape[:2]

pheight = int(height / ratio)
pwidth = int(width / ratio)

pHeightInterval = int(pheight)
pWidthInterval = int(pwidth)

cnt = 1

for i in range(ratio):
    for j in range(ratio):
        y = int(pHeightInterval * i)
        x = int(pWidthInterval * j)
        patch = img[y:y + pheight, x:x + pwidth]
        cv2.imshow('%d' % cnt + '.jpg', patch)
        cnt = cnt + 1
        #        patch=cv2.equalizeHist(patch) #直方图均衡
        #        ret,patch=cv2.threshold(patch,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
        dst[y:y + pheight, x:x + pwidth] = patch
cv2.imshow('final image', dst)

cv2.waitKey(0)
cv2.destroyAllWindows()

举报

相关推荐

0 条评论