题目:http://acm.hdu.edu.cn/showproblem.php?pid=4312
题解报告;
平面上两点间的 Chebyshev距离为 max(|x1-x2|, |y1-y2|)
这和上一道题差不多
求max(|x1-x2|, |y1-y2|)
怎么样才能将这一道题转化为上一道求解,
2*max(|x1-x2|, |y1-y2|)=|x1-x2-(y1-y2)|+|x1-x2+(y1-y2)|=|(x1-y1)-(x2-y2)|+|(x1-y1)+(x2+y2)|
上一题解的是
来那个这相比较
可以将x1=x1-y1,x2=x2-y2;y1=x1-y1,y2=x2+y2;对待
所以将上一题的答案改一下就好
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
typedef long long ll;
const int MAXN = 100100;
struct Point{
int x, y;
Point(){}
Point(int _x, int _y):x(_x),y(_y){}
}ary[MAXN];
int x[MAXN], y[MAXN];
ll sx[MAXN], sy[MAXN];
int main()
{
int T, n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i = 0; i < n; ++i)
{
scanf("%d%d",&x[i],&y[i]);
ary[i] = Point(x[i]-y[i],x[i]+y[i]); //改动
x[i]=ary[i].x,y[i]=ary[i].y; //改动
}
sort(x, x + n);
sort(y, y + n);
sx[0] = x[0];
sy[0] = y[0];
for(int i = 1; i < n; ++i)
{
sx[i] = sx[i - 1] + x[i];
sy[i] = sy[i - 1] + y[i];
}
ll ans = 1;
ans <<= 60;
for(int i = 0; i < n; ++i)
{
int rankx = lower_bound(x, x + n, ary[i].x) - x;
int ranky = lower_bound(y, y + n, ary[i].y) - y;
+sx[n - 1] - sx[rankx] - ll(ary[i].x) * (n - rankx - 1);
+sy[n - 1] - sy[ranky] - ll(ary[i].y) * (n - ranky - 1);
ans = min(ans, t);
}
cout<<ans/2<<endl;
}
return 0;
}