matrix
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 107 Accepted Submission(s): 73
Problem Description
n rows and m columns ( n+m is an odd number ), at first , you begin with the number at top-left corner (1,1) and you want to go to the number at bottom-right corner (n,m). And you must go right or go down every steps. Let the numbers you go through become an array a1,a2,...,a2k. The cost is a1∗a2+a3∗a4+...+a2k−1∗a2k. What is the minimum of the cost?
Input
5)
For each cases, first come 2 integers,
n,m(1≤n≤1000,1≤m≤1000)
N+m is an odd number.
Then follows
n lines with
m numbers
ai,j(1≤ai≤100)
Output
For each cases, please output an integer in a line as the answer.
Sample Input
2 3
1 2 3
2 2 1
2 3
2 2 1
1 2 4
Sample Output
4 8
#include<stdio.h>
#include<string.h>
int min(int x,int y)
{
return x>y?y:x;
}
int a[1010][1010];
int dp[1010][1010];
int main()
{
int n,m,i,j;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
scanf("%d",&a[i][j]);
memset(dp,0x3f3f3f,sizeof(dp));
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if((i+j)&1)//奇数步时考虑
dp[i][j]=min(dp[i-1][j]+a[i-1][j]*a[i][j],dp[i][j-1]+a[i][j-1]*a[i][j]);
else
dp[i][j]=min(dp[i-1][j],dp[i][j-1]);//偶数步时,取向右走,与向下走的最小值。
if(i==1&&j==1)
dp[i][j]=0;
}
}
printf("%d\n",dp[n][m]);
}
return 0;
}