0
点赞
收藏
分享

微信扫一扫

python的meshgrid用法和3D库 mpl_toolkits.mplot3d 与PolynomialFeatures多项式库学习

caoxingyu 2022-06-28 阅读 11

meshgrid

 

1 import numpy as np
2 from matplotlib import pyplot as plt
3 from mpl_toolkits.mplot3d import Axes3D
4 x = np.array([0,1,2])
5 y = np.array([0,1])
6 X,Y = np.meshgrid(x,y)#X,Y扩展成了矩阵,
7 print(X)
8 print(Y)
9 theta0, theta1, theta2 = 2, 3, 4
10 ax = Axes3D(plt.figure())#用来画三维图
11 Z = theta0 + theta1*X + theta2*Y#求z值
12 plt.plot(X,Y,'r.')#此时你会发现绘画出的是3*2个点,这些点组成一个网格,切每个点的坐标是X*Y的笛卡尔积
13 ax.plot_surface(X,Y,Z)#用来画三维图
14 plt.show()

​具体也可以参考这篇博客

mpl_toolkits.mplot3d

​关于3D绘图的博客

绘图时用到划分面板的方法

使用add_subplot

 

import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 100)
fig = plt.figure()
ax1 = fig.add_subplot(221)
ax1.plot(x, x)
ax2 = fig.add_subplot(222)
ax2.plot(x, -x)
ax3 = fig.add_subplot(223)
ax3.plot(x, x ** 2)
ax4 = fig.add_subplot(224)
ax4.plot(x, np.log(x))
plt.show()

 

使用subplot方法

import numpy as np
from matplotlib import pyplot as plt
x = np.arange(10)
plt.subplot(221)
plt.plot(x,x)
plt.subplot(223)
plt.plot(x,-x)
plt.show()

 

 

 

PolynomialFeatures

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from sklearn.preprocessing import PolynomialFeatures#多项式
4 from sklearn.linear_model import LinearRegression
5
6 # 载入数据
7 data = np.genfromtxt("job.csv", delimiter=",")
8 x_data = data[1:,1]
9 y_data = data[1:,2]
10 plt.scatter(x_data,y_data)
11 plt.show()
12 #维度必须是二维
13 x_data = x_data[:,np.newaxis]
14 y_data = y_data[:,np.newaxis]
15 # 定义多项式回归,degree的值可以调节多项式的特征
16 poly = PolynomialFeatures(degree=4)
17 # 特征处理
18 x_poly = poly.fit_transform(x_data)
19 # 定义回归模型
20 model = LinearRegression()
21 # 训练模型
22 model.fit(x_poly,y_data)
23 plt.plot(x_data,y_data,'b.')
24 plt.plot(x_data,model.predict(poly.fit_transform(x_data)),'r')
25 plt.show()

 

作者:你的雷哥

本文版权归作者所有,欢迎转载,但未经作者同意必须在文章页面给出原文连接,否则保留追究法律责任的权利。

举报

相关推荐

0 条评论