题目:
688. 骑士在棋盘上的概率
在一个 n x n 的国际象棋棋盘上,一个骑士从单元格 (row, column) 开始,并尝试进行 k 次移动。行和列是 从 0 开始 的,所以左上单元格是 (0,0) ,右下单元格是 (n - 1, n - 1) 。
象棋骑士有8种可能的走法,如下图所示。每次移动在基本方向上是两个单元格,然后在正交方向上是一个单元格。
每次骑士要移动时,它都会随机从8种可能的移动中选择一种(即使棋子会离开棋盘),然后移动到那里。
骑士继续移动,直到它走了 k 步或离开了棋盘。
返回 骑士在棋盘停止移动后仍留在棋盘上的概率 。
示例 1:
输入: n = 3, k = 2, row = 0, column = 0
输出: 0.0625
解释: 有两步(到(1,2),(2,1))可以让骑士留在棋盘上。
在每一个位置上,也有两种移动可以让骑士留在棋盘上。
骑士留在棋盘上的总概率是0.0625。
示例 2:
输入: n = 1, k = 0, row = 0, column = 0
输出: 1.00000
提示:
1 <= n <= 25
0 <= k <= 100
0 <= row, column <= n
简单递归题:
思路:
设 : dp[N][N][K] , 其中 dp[i][j][k] 表示在点 (i,j)跳 k步还在棋盘上的概率。
当 k = 0 时 : dp[i][j][0] = 1.0 恒成立。
当 k > 0 时 : dp[i][j][k]可以由dp[ni][nj][k−1] 转移而来 : dp[i][j][k] = Σ(dp[ni][nj][k - 1] / 8) , 其中 (ni,nj) 为 (i,j) 一步能跳到的位置。
class Solution {
static int[][] dirs = {{-2, -1}, {-2, 1}, {2, -1}, {2, 1}, {-1, -2}, {-1, 2}, {1, -2}, {1, 2}};
public double knightProbability(int n, int k, int row, int column) {
double[][][] dp = new double[k + 1][n][n];
for (int step = 0; step <= k; step++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (step == 0) {
dp[step][i][j] = 1;
} else {
for (int[] dir : dirs) {
int ni = i + dir[0], nj = j + dir[1];
if (ni >= 0 && ni < n && nj >= 0 && nj < n) {
dp[step][i][j] += dp[step - 1][ni][nj] / 8;
}
}
}
}
}
}
return dp[k][row][column];
}
}
- 时间复杂度:O(k*n^2)
- 空间复杂度:O(k*n^2)