1045 - Digits of Factorial
PDF (English) Statistics Forum
Time Limit: 2 second(s) Memory Limit: 32 MB
Factorial of an integer is defined by the following function
f(0) = 1
f(n) = f(n - 1) * n, if(n > 0)
So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.
In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.
Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.
Each case begins with two integers n (0 ≤ n ≤ 106) and base (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.
Output
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.
Sample Input
Output for Sample Input
5
5 10
8 10
22 3
1000000 2
0 100
Case 1: 3
Case 2: 5
Case 3: 45
Case 4: 18488885
Case 5: 1
题意:n!转化成k进制会有多少位。
题解:
先举一个例子:
5!=120,120化为8进制就是170,有3位。
我们先看十进制120如何转成八进制170的。
1.120%8=0,120/8=15
2.15%8=7,15/8=1
3.1%8=1, 1/8=0;
这样三次就出来170,且正好3位
即n!<=k^m,求出最小的m就是换算出k进制有多少位了。
1*2*3*......*n=k^m两边分别取对数得:log1+log2+log3+......+logn=m*logk;
那么m=(log1+log2+log3+......+logn)/(logk)
前面log1+....logn可以先打表出来
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<queue>
#include<stack>
#include<map>
using namespace std;
typedef long long ll;
double a[1000000+11];
void getlog()
{
a[0] = a[1] = 0;
for (int i = 2 ; i <= 1000000 ; i++)
a[i] = a[i-1] + log((double)i);
}
int main()
{
getlog();
int n,k;
int T;
int cas = 1;
scanf ("%d",&T);
while (T--)
{
scanf ("%d %d",&n,&k);
printf ("Case %d: ",cas++);
if (n == 0)
{
printf ("1\n");
continue;
}
double ans = a[n];
ans = ans / (log((double)k));
if (ans != (int)ans)
ans = (int)ans + 1;
printf ("%.lf\n",ans);
}
return 0;
}