0
点赞
收藏
分享

微信扫一扫

CodeForces - 145E - Lucky Queries(线段树[区间合并])


题意:

告诉你一个4和7 的序列

两种操作:

1. 讲区间的数反转(即4变7  7变4)

2。 输出总区间中   非递减子序列的长度。


思路:

注意:子序列是可以不连续的


很明显是线段树了。

统计4的长度。

统计7 的长度。

统计4开头 7结尾的长度。

然后就是简单的区间合并问题了。

因为涉及区间反转,所以 可以在开同样的变量 记录反转后 4 的长度, 反转后7的长度, 反转后47的长度。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;


const int maxn = 1000000 + 10;

struct node{
    int l,r;
    int len4[2], len7[2], len47[2];
    int ans;
    int rev;
    int len;
}nod[maxn<<2];

char s[maxn];
char cmd[20];

void pushup(int o){
    int lson = o << 1;
    int rson = o << 1 | 1;
    nod[o].len4[0] = nod[lson].len4[0] + nod[rson].len4[0];
    nod[o].len7[0] = nod[lson].len7[0] + nod[rson].len7[0];
    nod[o].len47[0] = 0;
    nod[o].len47[0] = max(nod[lson].len4[0] + nod[rson].len7[0], nod[o].len47[0]);
    nod[o].len47[0] = max(nod[lson].len4[0] + nod[rson].len47[0], nod[o].len47[0]);
    nod[o].len47[0] = max(nod[lson].len47[0] + nod[rson].len7[0], nod[o].len47[0]);
    nod[o].ans = 0;
    nod[o].ans = max(nod[o].ans, nod[o].len4[0]);
    nod[o].ans = max(nod[o].ans, nod[o].len7[0]);
    nod[o].ans = max(nod[o].ans, nod[o].len47[0]);


    ///========================


    nod[o].len4[1] = nod[lson].len4[1] + nod[rson].len4[1];
    nod[o].len7[1] = nod[lson].len7[1] + nod[rson].len7[1];
    nod[o].len47[1] = 0;
    nod[o].len47[1] = max(nod[lson].len4[1] + nod[rson].len7[1], nod[o].len47[1]);
    nod[o].len47[1] = max(nod[lson].len4[1] + nod[rson].len47[1], nod[o].len47[1]);
    nod[o].len47[1] = max(nod[lson].len47[1] + nod[rson].len7[1], nod[o].len47[1]);
}


void deal(int o){
    nod[o].rev ^= 1;
    swap(nod[o].len4[0], nod[o].len4[1]);
    swap(nod[o].len7[0], nod[o].len7[1]);
    swap(nod[o].len47[0], nod[o].len47[1]);
    nod[o].ans = 0;
    nod[o].ans = max(nod[o].ans, nod[o].len4[0]);
    nod[o].ans = max(nod[o].ans, nod[o].len7[0]);
    nod[o].ans = max(nod[o].ans, nod[o].len47[0]);
}
void pushdown(int o){

    if (nod[o].rev){
        deal(o<<1);
        deal(o<<1|1);
        nod[o].rev = 0;
    }
}

void build(int l,int r,int o){
    nod[o].l = l;
    nod[o].r = r;
    nod[o].rev = 0;
    nod[o].len = r - l + 1;
    if (l == r){
        if (s[l] == '4'){
            nod[o].len4[0] = 1;
            nod[o].len7[0] = 0;
            nod[o].len47[0] = 0;

            nod[o].len4[1] = 0;
            nod[o].len7[1] = 1;
            nod[o].len47[1] = 0;
            nod[o].ans = 1;
            return;
        }
        else {
            nod[o].len4[0] = 0;
            nod[o].len7[0] = 1;
            nod[o].len47[0] = 0;

            nod[o].len4[1] = 1;
            nod[o].len7[1] = 0;
            nod[o].len47[1] = 0;
            nod[o].ans = 1;
            return;
        }
    }


    int m = l + r >> 1;
    build(l, m, o << 1);
    build(m+1, r, o<<1|1);
    pushup(o);
}



void update(int L,int R,int l,int r,int o){
    if (L <= l && r <= R){
        deal(o);
        return;
    }
    pushdown(o);

    int m = l + r >> 1;
    if (m >= L){
        update(L, R, l, m, o<<1);
    }
    if (m < R){
        update(L, R, m+1, r, o<<1|1);
    }
    pushup(o);
}



int main(){

    int n,q;
    scanf("%d %d", &n, &q);

    scanf("%s", s+1);
    build(1, n, 1);

    while(q--){
        scanf("%s", cmd);
        if (cmd[0] == 'c'){
            printf("%d\n", nod[1].ans);
        }
        else {
            int x,y;
            scanf("%d %d", &x, &y);
            update(x, y, 1, n, 1);
        }
    }



    return 0;
}


E. Lucky Queries



time limit per test



memory limit per test



input



output



Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467

s with the length of n. The string only consists of lucky digits. The digits are numbered from the left to the right starting with 1. Now Petya should execute m

  • switch l r — "switch" digits (i.e. replace them with their opposites) at all positions with indexes from l to r, inclusive: each digit 4 is replaced with 7 and each digit 7 is replaced with 4 (1 ≤ l ≤ r ≤ n);
  • count — find and print on the screen the length of the longest non-decreasing subsequence of string s.

s is a string that can be obtained from s

Help Petya process the requests.



Input



n and m (1 ≤ n ≤ 106, 1 ≤ m ≤ 3·105) — the length of the string s and the number of queries correspondingly. The second line contains n lucky digits without spaces — Petya's initial string. Next m



Output



count



Examples



input



2 3 47 count switch 1 2 count



output



2 1



input



3 5
747
count
switch 1 1
count
switch 1 3
count



output



2 3 2



Note



s after some operations are fulfilled is as follows (the sought maximum subsequence is marked with bold):

  1. 47
  2. 74
  3. 74

In the second sample:


  1. 47
  2. 447
  3. 447
  4. 774
  5. 774




举报

相关推荐

0 条评论