0
点赞
收藏
分享

微信扫一扫

吴恩达《机器学习》课程总结(4)_多变量线性回归

Q1多维特征

吴恩达《机器学习》课程总结(4)_多变量线性回归_缩放

上图中列数即为特征的个数,行数是样本数。函数假设如下:

吴恩达《机器学习》课程总结(4)_多变量线性回归_正规方程_02

其中x0=1。

Q2多变量梯度下降

和单变量的损失函数相同:

吴恩达《机器学习》课程总结(4)_多变量线性回归_迭代_03

其中,吴恩达《机器学习》课程总结(4)_多变量线性回归_正规方程_04

求导迭代如下:

吴恩达《机器学习》课程总结(4)_多变量线性回归_迭代_05

Q3梯度下降法实践1-特征缩放

特征之间的尺度变化相差很大(如一个是0-1000,一个是0-5),梯度算法需要非常多次的迭代才能收敛,如下图所示:

吴恩达《机器学习》课程总结(4)_多变量线性回归_缩放_06

方法:将各个特征缩放至大致相同的尺度,最简单的方法就是特征减去均值除以方差。如下所示:

吴恩达《机器学习》课程总结(4)_多变量线性回归_正规方程_07

Q4梯度下降法实践2-学习率

学习率过小收敛慢,学习率过大可能导致无法收敛。

通常通过三倍放大来考虑学习率的设置,比如:0.01,0.03,0.1,0.3,1,3,10……。

Q5特征和多项式回归

比如一个二次模型:

吴恩达《机器学习》课程总结(4)_多变量线性回归_缩放_08

或者三次模型:

吴恩达《机器学习》课程总结(4)_多变量线性回归_正规方程_09

可以通过创建新特征(即令):

吴恩达《机器学习》课程总结(4)_多变量线性回归_正规方程_10

从而将模型转换成线性模型。

Q6正规方程

前提:对于某些线性回归问题,使用正规方程求解一步到位(导数为零等式求解)。如下所示

吴恩达《机器学习》课程总结(4)_多变量线性回归_缩放_11

直接令

吴恩达《机器学习》课程总结(4)_多变量线性回归_迭代_12

参数的解直接为:

吴恩达《机器学习》课程总结(4)_多变量线性回归_迭代_13

(X包含x0=1)。(其中X是第一列为1剩下的为行为example列为feature的值)

梯度下降与正规方程的比较:

吴恩达《机器学习》课程总结(4)_多变量线性回归_正规方程_14

Q7正规方程及不可逆性:

(1)特征之间互相不独立时不可逆;

(2)样本数少于特征数时不可逆。

吴恩达《机器学习》课程总结(4)_多变量线性回归_缩放_15

 

     吴恩达《机器学习》课程总结(4)_多变量线性回归_迭代_16

 

词汇

multivariate linear regression 多元线性回归
feature scaling ---特征缩放
non-linear function ---非线性函数
normal equation ---正规方程

  

作者:你的雷哥

本文版权归作者所有,欢迎转载,但未经作者同意必须在文章页面给出原文连接,否则保留追究法律责任的权利。

举报

相关推荐

0 条评论